Competition of ferromagnetism and superconductivity in Sc_3InB_x

B. Wiendlocha^a, J. Tobola^a, S. Kaprzyk^a, D. Fruchart^b, J. Marcus^c

^aFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland

^bLaboratoire de Cristallographie, CNRS Grenoble, France

^cLaboratoire d'Etude des Proprietes Electroniques des Solides, CNRS Grenoble, France

Recent discovery of superconductivity in the intermetallic perovskite MgCNi₃ was a great surprise due to large Ni contents and this compound was rather expected to be near ferromagnetic critical point. We present results of electronic structure calculations with Full–Potential KKR-LDA method for similar perovskite material – Sc₃InB – which is very promising candidate for a new superconductor. Interestingly, this compound may be regarded as a boron–inserted cubic Sc_3In , which is a high–pressure allotropic form of the well-known hexagonal weak ferromagnet Sc_3In . KKR calculations showed that scandium atoms keep magnetic moment (of about 0.25 μ_B) in both phases of Sc₃In, while Sc_3InB exhibits non-magnetic state with large DOS in the vicinity of E_F . Estimation of the electron–phonon coupling constant λ from McMillan–Hopfield formulas and calculated phonon DOS gave $\lambda \sim 1$ for Sc₃InB. The effect of vacancy in Sc₃InB_{1-x} and In/B disorder in Sc₃(In-B) on critical parameters were also discussed in view of KKR–CPA method. All theoretical results supported possibility of the superconductivity onset in Sc₃InB. A sample was prepared by arc melting technique and preliminary experimental data were collected using AC susceptometer equipped with a parallel resistivity measurement. The transition temperature was established close to 4.5 K, with a very abrupt change in susceptibility and a correlated drop of the resistivity when cooling down.

-13.4 cm -

Subject category :

7. Computations of Electronic Structures

Presentation mode : oral or poster

Corresponding author : Bartlomiej Wiendlocha

Address for correspondence :

Faculty of Physics and Applied Computer Science AGH University of Science and Technology al. Mickiewicza 30, 30-059 Krakow, Poland

Email address :

bartekw@fatcat.ftj.agh.edu.pl

 $9.7~\mathrm{cm}$