Generalized theoretical approach to quasi-one-dimensional molecular magnets

R. Pełka^a, M. Bałanda^a, P. Przychodzeń^b, K. Tomala^c,
B. Sieklucka^b, T. Wasiutyński^a

 a The H. Niewodniczański Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland

^b Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland

^c M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4,

30-059 Kraków, Poland

Two quasi-one-dimensional compounds $[Ln^{III}(terpy)(DMF)_4][W^V(CN)_8]\cdot 6H_2O$, where Ln stands for Gd or Sm, were synthesized and the measurements of their magnetic features were carried out. Magnetization was measured at 2 K in the field range 0–5 T. To extract physical information from the experimental data a generalization of the theoretical approach given by Verdaguer *et al.* [Phys. Rev. B 29, 5144 (1984)] is put forward. That theoretical model is found to fit the data well. It allows for the determination not only of the coupling constant but also of the zero-field splitting parameter.

Subject category :

6. Theory of Magnetism

Presentation mode : poster

Corresponding author : R. Pełka

Address for correspondence : Radzikowskiego 152, 31-342 Kraków, Poland

Email address :

Robert. Pelka@ifj.edu.pl

 $9.7~\mathrm{cm}$