THERMAL HYSTERESIS OF THE PHASE TRANSITION TEMPERATURE OF SINGLE CRYSTALLINE GdB_6

M. Reiffers^a, J. Šebek^b, E. Šantavá^b, G. Pristáš^a and S. Kunii^c

^aInstitute of Experimental Physics, Watsonova 47, Kosice, Slovakia

^bInstitute of Physics, V Holešovičkách 2, 180 00 Praha, Czech republic

^cTohoku University, Sendai 980, Japan

The intermetallic compounds REB_6 type crystallize in the cubic CaB_6 structure. They display a great diversity of magnetic phenomena. Among them GdB₆ is interesting because of two magnetic transition at low temperatures. Recently, a detailed X-ray scattering study of the phase transition showed 2 new wave vectors at low temperatures [1]. We have studied the phase transition on the single crystalline sample of GdB₆, oriented along < 111 > axis using the temperature dependence of electrical resistivity, heat capacity and susceptibility under an applied magnetic field. The temperature dependence of the electrical resistivity $\rho(T)$ has shown 2 anomalies - a sharp drop at T_N = 15 K and a small maximum at $T_2 = 9$ K (when cooling down), as previously reported. However, the clear thermal hysteresis occurred at transition temperature T_2 . When heating up the transition is shifted to $T_2 = 8.5$ K. Heat capacity C(T) shows a sharp peak at T_N which was practically unaffected by an applied magnetic field up to 9 T. At the second transition temperature T_2 the heat capacity shows a small maximum which postion shows the thermal hysteresis behaviour. Moreover, this maximum is shifting its position to lower temperatures and vanishing with increasing magnetic field. Our measurements confirm the variety and complexity of magnetic phase diagram of GdB₆. [1] D.F. McMorrow et al., Physica **B345** (2004) 66

← 13.4 cm −

Subject category:

4. Rare Earths and Actinides, Alloys and Compounds

Presentation mode:

poster

Corresponding author:

M. Reiffers

Address for correspondence:

Institute of Experimental Physics, Watsonova 47, SK-043 53, Košice, Slovakia

Email address:

reiffers@saske.sk

 $9.7~\mathrm{cm}$