Electronic structure of rare-earth compounds $\mathrm{TmGa}_{3}, \mathrm{ErGa}_{3}$, and CeIn_{3} studied by positrons ${ }^{1}$
${ }^{a}$ Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
${ }^{b}$ ENEA, via don Fiammelli 2, 40129 Bologna, Italy

The isostructural systems $\mathrm{TmGa}_{3}, \mathrm{ErGa}_{3}$, and CeIn_{3} constitute an interesting subject for their magnetic properties and, in the case of CeIn_{3}, for the fascinating interplay of antiferromagnetism, heavy-fermion behaviour and superconductivity under application of pressure ${ }^{3}$. The electronic structure of these compounds has recently been investigated by measurements of the two-dimensional angular correlations of positron annihilation radiation (2D ACAR), providing line projections of the electron-positron momentum density $\rho(\mathbf{p})^{4}$. Whereas for all systems the f-electrons are mostly localized in the paramagnetic phase, the exact shape of their Fermi surfaces (FS) is slightly different. Indeed, TmGa_{3} and ErGa_{3} show a FS nesting, consistent with the observed magnetic structure, which does not occur in CeIn_{3} having a different magnetic structure. Since the FS geometry is decisive to draw these conclusions, we present how various tomographic methods can influence 3D momentum densities and FS of the compounds ${ }^{5}$.

Subject category :

4. Rare Earths and Actinides, Alloys and Compounds

Presentation mode :
poster

Corresponding author :

M. Samsel-Czekała

Address for correspondence :

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland

Email address :

samsel@int.pan.wroc.pl

[^0]
[^0]: ${ }^{1}$ Supported by Polish State Committee for Scientific Research (Grant No. 2 P03B 012 25).
 ${ }^{2}$ Dept. of Physics, Univ. of California at Riverside, Riverside, California 92521, USA.
 ${ }^{3}$ F.M. Grosche et al., J. Phys.: CM 13, 2845 (2001), and references therein.
 ${ }^{4}$ M. Biasini et al., PRL 86, 4616 (2001); PRB 66, 075126 (2002); 68, 094513 (2003).
 ${ }^{5}$ G. Kontrym-Sznajd et al., PRB 70, 125103 (2004), and references therein.

