Electronic structure of rare-earth compounds TmGa₃, ErGa₃, and CeIn₃ studied by positrons¹

M. Samsel-Czekała^a, G. Kontrym-Sznajd^a, and M. Biasini^{b,2}

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland

^bENEA, via don Fiammelli 2, 40129 Bologna, Italy

The isostructural systems TmGa₃, ErGa₃, and CeIn₃ constitute an interesting subject for their magnetic properties and, in the case of $CeIn_3$, for the fascinating interplay of antiferromagnetism, heavy-fermion behaviour and superconductivity under application of pressure³. The electronic structure of these compounds has recently been investigated by measurements of the two-dimensional angular correlations of positron annihilation radiation (2D ACAR), providing line projections of the electron-positron momentum density $\rho(\mathbf{p})^4$. Whereas for all systems the f-electrons are mostly localized in the paramagnetic phase, the exact shape of their Fermi surfaces (FS) is slightly different. Indeed, TmGa₃ and ErGa₃ show a FS *nesting*, consistent with the observed magnetic structure, which does not occur in $CeIn_3$ having a different magnetic structure. Since the FS geometry is decisive to draw these conclusions, we present how various tomographic methods can influence 3D momentum densities and FS of the compounds⁵.

– 13.4 cm –

Subject category :

4. Rare Earths and Actinides, Alloys and Compounds

Presentation mode : poster

Corresponding author : M. Samsel-Czekała

Address for correspondence :

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland

Email address :

samsel@int.pan.wroc.pl

¹Supported by Polish State Committee for Scientific Research (Grant No. 2 P03B 012 25).

²Dept. of Physics, Univ. of California at Riverside, Riverside, California 92521, USA. ³F.M. Grosche et al., J. Phys.: CM 13, 2845 (2001), and references therein.

⁴M. Biasini et al., PRL **86**, 4616 (2001); PRB **66**, 075126 (2002); **68**, 094513 (2003).

9.7 cm

⁵G. Kontrym-Sznajd et al., PRB **70**, 125103 (2004), and references therein.