ELECTRONIC STRUCTURE AND MAGNETISM OF LaVO $_3$ and LaMnO $_3$

R. J. Radwanski^{*a,b*} and Z. Ropka^{*a*}

^aCenter of Solid State Physics, S^{nt} Filip 5,31-150Krakow,Poland
^bInstitute of Physics, Pedagogical University, 30-084 Krakow, Poland
e-mail: sfradwan@cyf-kr.edu.pl; http://www.css-physics.edu.pl

 $LaVO_3$ and $LaMnO_3$ are a subject of large interest by almost of 30 years due to their anomalous magnetic properties. In this contribution we derive and discuss energy levels of the strongly-correlated d^2 configuration of the V^{3+} ion and of d^4 configuration of the Mn^{3+} ion in the octahedral surroundings in the presence of the spin-orbit coupling and the resulting magnetic properties. We take into account very strong correlations among the d electrons and work with strongly-correlated atomic-like electronic systems, ground term of which is, also in a solid, described by two Hund's rules quantum numbers. In a solid we take into account the influence of crystal-field interactions, predominantly of the cubic (octahedral) symmetry. We describe both paramagnetic state and the magnetically-ordered state getting a value of 1.4 u_B for the V³⁺-ion magnetic moment in the ordered state at 0 K of LaVO₃ (${}^{3}T_{1a}$) and of 3.7 u_B for LaMnO₃ (${}^{5}E_{a}$). Both values well reproduce the experimental data. A remarkably consistent description of both zero-temperature properties and thermodynamic properties indicates on the high physical adequacy of the applied atomic approach, being somehow a continuation of Van Vleck's studies. The shown ground states have been confirmed recently by other researchers. We point out the necessity to unquench the orbital moment in 3d-ion compounds.

Subject category :

3. Transition Metals, Alloys and Compounds

Presentation mode : poster

Corresponding author : R. J. Radwanski

Address for correspondence : Center of Solid State Physics, S^{nt} Filip 5, 31-150 Krakow, Poland

Email address :

zofiaropka@fizyk.instytut.serwery.pl

 $9.7~\mathrm{cm}$