THE EFFECT OF Ge SUBSTITUTION IN $Ni_2MnGa_{1-x}Ge_x$ HEUSLER ALLOYS AND FILMS

I. Gościańska a , J. Dubowik b , Y. V. Kudryavtsev c , A. Jezierski b

^{*a*}Dept. of Physics, A. Mickiewicz Univ., Umultowska 85, 61-613 Poznań, Poland ^{*b*}Institute of Molecular Physics, Polish Academy of Sciences, Poznan, 60-179, Poland

^cInstitute of Metal Physics, Volsa Academy of Sciences of Ukraine, Kiev-142,

Ukraine

 $9.7~\mathrm{cm}$

Structural instabilities typical of Ni-Mn-Ga Heusler alloys with ferromagnetic shapememory effect have recently been predicted to exist in Ni₂MnGe¹. We present the results on the effect of adding Ge on the magnetic properties of Ni₂MnGa_{1-x}Ge_x (0 < x < 0.4) alloys and thin films. It is found that the alloys are single phase with L2₁ ordering (cubic lattice constant $a \simeq 0.581$ nm). The Ge addition causes a drastic decrease in the martensitic transformation temperature from $T_{\rm M} = 200$ K (x = 0) to $T_{\rm M} = 50$ K (x = 0.4) with almost no effect on the Curie temperature $T_{\rm C} \simeq 390$ K and magnetization $M_S(0) \simeq 450-500$ G. The magnetic properties of thin films strongly depend on ordering. The ordered films deposited by flash-evaporation from the powdered alloys have similar L2₁ (or B2) ordering and exhibit the magnetic properties similar to the properties of corresponding bulk alloys. First principle calculations of site-projected density of states for Ga and Ge were carried out to trace differences in the spin-down electronic states close to the Fermi level.

¹A. T. Zayak and P. Entel, J. Magn. Magn. Mater. (preprint)

— 13.4 cm –

Subject category :

3. Transition Metals, Alloys and Compounds

Presentation mode : poster

Corresponding author : I. Gościańska

Address for correspondence : Dept. of Physics, A. Mickiewicz Univ., Umultowska 85, 61-613 Poznań, Poland

Email address : igosc@amu.edu.pl