HYPERFINE INTERACTIONS AND MAGNETIC, TRANSPORT AND STRUCTURAL PROPERTIES OF La_{0.67}Ca_{0.33}Mn_{0.94}⁵⁷Fe_{0.06}O₃

J. Przewoźnik^a, J. Żukrowski^a, J. Chmist^a, Z. Tarnawski^a, A. Kołodziejczyk^a, K. Krop^a, K. Kellner^b, G. Gritzner^b

^aFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland

^bInstitut für Chemische Technologie Anorganischer Stoffe, Johannes Kepler Universität Linz, A-4040 Linz, Austria

The $La_{0.67}Ca_{0.33}Mn_{0.94}$ ⁵⁷Fe_{0.06}O₃ compound was studied using powder X-ray diffraction (XRD), VSM magnetometry, four-probe resistance (R) measurements and Mössbauer spectroscopy. XRD measurements were performed between 4 and 500 K and precise values of the unit cell parameters vs temperature were obtained. The metal-insulator transition temperature T_{M-I} , defined as the maximum of the R(T) curve, was found surprisingly low and equal to 62 K. The ⁵⁷Fe Mössbauer spectra were recorded between 15 K and 850 K. The Curie temperature ($T_C \cong 141$ K), determined from temperature dependence of the ⁵⁷Fe hyperfine field, was in good agreement with the magnetisation result (142 K). Our results on La_{0.67}Ca_{0.33}Mn_{0.94}⁵⁷Fe_{0.06}O₃ clearly reveal that substitution of Fe³⁺ for Mn³⁺ suppresses locally double exchange interactions and strongly affects the magnetic and transport properties of the parent compound. It causes the strong reduction of T_C , the huge difference between T_C and T_{M-I} temperatures and complete suppression of the thermal expansion anomaly at T_C .

-13.4 cm -

Subject category :

3. Transition Metals, Alloys and Compounds

Presentation mode : poster

Corresponding author : J. Przewoźnik

Address for correspondence : al. Mickiewicza 30, 30-059 Kraków

Email address :

januszp@uci.agh.edu.pl

9.7 cm