THE ORIGIN OF LOW-DIMENSIONAL MAGNETISM IN $Cu(en)_2Ni(CN)_4$ AND $Cu(en)_2Pt(CN)_4$.

K. Tibenská a , A.Orendáčová a , E. Čižmár a , J.-H. Park b , M. Orendáč a , A. G. Anders c , M. Vavra d , I. Potočňák d , J. Černák d , A. Feher a and M. W. Meisel b

^a Institute of Physics, Centre of Low Temperature Physics, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia

^bDepartment of Physics and Center for Condensed Matter Sciences,
University of Florida, Gainesville, FL 32611-8440, USA
^cInstitute for Low Temperature Physics and Engineering, Lenin Av. 47,
310164 Kharkov, Ukraine

^dInstitute of Chemistry, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia

The comparative analysis of the structural and magnetic properties of the chain-like materials $Cu(en)_2Ni(CN)_4$ and $Cu(en)_2Pt(CN)_4$ ($en = C_2H_8N_2$) has been performed. The results suggest that the origin of the two-dimensional (2d) short-range correlations observed below 1 K cannot be unambiguously ascribed to a combined effect of intrachain covalent pathways and interchain coupling formed by hydrogen bonds, as previously proposed [1]. An EPR investigation of the symmetry of the local Cu(II) surroundings at 4 K, complemented by the studies of the hydrogen bond geometry, susceptibility, and magnetization, suggest the magnetic correlations between Cu(II) ions are mediated predominantly through a 2d net of hydrogen bonds.

[1] M. Orendáč, A. Orendáčová, J. Černák, A. Feher, Sol. St. Commun. 94 (1995) 833.

—— 13.4 cm ————

Subject category:

3. Transition Metals, Alloys and Compounds

Presentation mode:

poster

Corresponding author:

Katarína Tibenská

Address for correspondence:

Institute of Physics P.J. Šafárik University Park Angelinum 9 041 54 Košice, Slovakia

Email address:

tibenska@upjs.sk

 $9.7~\mathrm{cm}$