EPR AND MAGNETIZATION STUDIES OF THE $LaMn_{0.46}Co_{0.54}O_3$ AND $HoMn_{0.49}Co_{0.51}O_3$ SINGLE CRYSTALS

P. Aleshkevych^a, M. Baran^a, S. V. Shiryaev^b, R. Szymczak^a and H. Szymczak^a

 $^a {\rm Institute}$ of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland

^bInstitute of Solid State and Semiconductor Physics, National academy of Science of Belarus, P. Brovki Str. 17, 220072 Minsk, Belarus

The electron paramagnetic resonance spectra of $\mathrm{Mn^{4+}}$ and $\mathrm{Co^{2+}}$ ions in the orthorhombic $\mathrm{LaMn_{0.46}Co_{0.54}O_3}$ and $\mathrm{HoMn_{0.49}Co_{0.51}O_3}$ single crystals grown by the electrodeposition method have been studied at 9.2 GHz. The observed fine structure was fitted using spin-Hamiltonian with S=3/2, confirming $\mathrm{Mn^{4+}}$ assignment. The temperature-induced spin reorientation accompanied with enhancing of Ho magnetic moment was found at T≈28K in $\mathrm{HoMn_{0.49}Co_{0.51}O_3}$. The overall results of magnetization studies and EPR indicate on presence of both ferro- and antiferromagnetic interactions at low temperatures.

The work was supported by the Polish State Committee for Scientific Research Project P03B 038 27.

13.4 cm

Subject category:

3. Transition Metals, Alloys and Compounds

Presentation mode:

poster

Corresponding author:

P. Aleshkevych

Address for correspondence:

Institute of Physics,
Polish Academy of Sciences,
al. Lotnikow 32/46, ON3.5
02-668 Warsaw,
Poland

Email address:

pavloa@ifpan.edu.pl

 $9.7~\mathrm{cm}$