DIODE EFFECT IN TRANSPORT THROUGH A QUANTUM DOT COUPLED TO NON-COLLINEARLY POLARIZED FERROMAGNETIC LEADS

W. Rudziński^a, J. Barnaś^{a,b}, **R. Świrkowicz**^c and **M. Wilczyński**^c ^aDepartment of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland

^bInstitute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland

^cFaculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland

 $9.7~\mathrm{cm}$

Electron tunneling through a spin-split discrete level of an interacting quantum dot coupled to two ferromagnetic electrodes with non-collinear magnetizations is investigated theoretically by means of the nonequilibrium Green-function approach. It is shown that the spin splitting of the dot level leads to a number of new effects. Asymmetry in the tunnel magnetoresistance (TMR) with respect to the bias reversal and non-monotonous angular variation of the spin-polarized current are found for symmetrical tunnel junctions. Numerical results also show that negative differential conductance and diode effect may occur in symmetrical junctions with non-collinear magnetizations and for large enough magnetic polarization of the leads. It is also found that in asymmetrical junctions with one electrode being half-metallic, the spin splitting gives rise to an enhancement of the diode-like behavior. The latter feature is accompanied by a splitting of the TMR peak in the bias range for which the sequential tunneling is exponentially suppressed.

_____13.4 cm ____

Subject category :

2. Magnetic Films, Surfaces, Multilayers and Nanostructures

Presentation mode : poster

Corresponding author : W. Rudziński

Address for correspondence :

Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland

Email address : wojrudz@amu.edu.pl