STRUCTURE, TRANSPORT AND MAGNETIC CHARACTERIZATION OF La_{0.89}Sr_{0.11}MnO₃/YBa₂Cu₃O₇ SUPERLATTICES

A. Tsarev^a, I. Komissarov^a, P. Dluzewski^a, W. Paszkowicz^a, R.
Minikayev^a, M. Sawicki^a, B. Dabrowski^b, C. Kimball^b and P. Przysłupski^a
^aInstitute of Physics, Polish Academy of Sciences, Warsaw, Poland.
^bDept. of Physics and the Institute for Nanoscience, Engineering and Technology

Northern Ill. University, De Kalb, Illinois .

We report on structural, transport and magnetic studies of $La_{0.89}Sr_{0.11}MnO_3/YBa_2Cu_3O_7$ (LSMO/YBCO) superlattices. For this doping level (x=0.11) the LSMO system is a ferromagnetic insulator (FMI). Proximity effect between a ferromagnetic insulator and YBCO system is very interesting problem , both for fundamental research and application. A series of LSMO/YBCO superlattices have been fabricated using a high pressure sputtering, with fixed LSMO layer thickness at 8 unit cells (u.c.) and varying YBCO layer thickness from 1 to 8 u.c. c - axis layer thickness. An onset of superconducting transition is observed beginning from the samples with 2 u.c. YBCO layer thickness. Magnetization hysteresis curves measured close to superconducting transition show interplay between Meissner currents in YBCO layers and magnetic field present in LSMO layers.

-13.4 cm -

Subject category :

2. Magnetic Films, Surfaces, Multilayers and Nanostructures

Presentation mode : poster

Corresponding author : P. Przysłupski

Address for correspondence :

Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.

Email address : przys@ifpan.edu.pl

 $9.7~\mathrm{cm}$