Magnetic viscosity in soft magnetic nanocrystalline FeNbB alloys I. Škorvánek and J. Kováč

Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-043 53 Košice, Slovakia

The attention of the present work is focused on the study of the magnetic viscosity at elevated temperatures in the nanocrystalline ternary $Fe_{80.5}Nb_7B_{12}$ alloy with a low and medium volumetric fraction of nanocrystalline particles. An analysis of the logarithmic-like time creep of magnetization below and above the Curie temperature of the amorphous matrix, $T_c(am)$, enabled us to calculate the corresponding values of the fluctuation field, H_f , and the activation volume, V_{act} , of the soft magnetic specimens. We have found that slightly below $T_c(am)$, the estimated activation volume is rather large and involves more than 10^2 grains. Above $T_c(am)$, V_{act} is strongly reduced but it is still larger than the size of single nanocrystalline grains. This indicates that above $T_c(am)$, the bcc-Fe particles are still interacting and V_{act} involves several grains coherently reversing their magnetic moments.

Subject category :

2. Magnetic Films, Surfaces, Multilayers and Nanostructures

Presentation mode : poster

Corresponding author :

I. Škorvánek

Address for correspondence :

Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-043 53 Košice, Slovakia

Email address :

skorvi@saske.sk

 $9.7 \mathrm{~cm}$