Superconducting and magnetic properties of large-angle bismuth bicrystals

F.Muntyanu^{*a,b*}, A.Gilewski^{*b*}, K.Nenkov^{*c*}, J.Warchulska^{*b*}, A.Zaleski^{*d*}

 $^a {\rm Institute}$ of Applied Physics, Academy of Sciences of Moldova, Academy str.5, MD-2028 Chisinau, Moldova

^bInternational Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka St., 53-421 Wroclaw, Poland

^cInstitut fur Festkorper- und Werkstofforschung Dresden, P.O. Box 270116, D-01171, Dresden, Germany

^dPolish Academy of Sciences, Institute of Low Temperature and Structure Research, P.O.Box 1410, 50-950 Wroclaw, Poland

Magnetic moment measurements in large-angle ($\Theta > 30^{\circ}$) bicrystals of bismuth with crystallite interface (CI) of twisting type were performed by use of a Cahn balance, PPMS and SQUID magnetometers. Bicrystals were obtained by zone recrystallization method using double seed technique. The magnetic properties of bicrystals essentially differ from well-known results on single-crystal bismuth (the paramagnetism of charge carriers become stronger, the diamagnetism rise, etc). Two superconducting phase at CI of bicrystals with $T_c \sim 8.4$ K (for some bicrystals $T_{onset} \sim 16$ K) and $T_c \sim 4.3$ K was observed (ordinary rhombohedral Bi is not a superconductor). It was shown that one of them (phase with $T_c \sim 8.4$ K is localized in central part of CI and have an upper critical field ~ 2.5 T, and a coherence length ~ 12 nm. Also it was found that in adjacent layers (width of layer $L_a \sim 20$ nm) of CI the density of electrons is lower than in central part and is significant the proximity effect.

— 13.4 cm –

Subject category :

2. Magnetic Films, Surfaces and Multilayers

Presentation mode : poster

Corresponding author : A.Gilewski

Address for correspondence : MLSPMiNT 53-421 Wroclaw ul. Gajowicka 95

Email address : gil@alpha.ml.pan.wroc.pl

9.7 cm