Domain structure of NiFe/Au/Co/Au multilayers with perpendicular anisotropy

M. Urbaniak^a, F. Stobiecki^a, D. Engel^b, B. Szymański^a, A. Ehresmann^b, JinBae Kim^c

^aInstitute of Molecular Physics PAN, ul. Smoluchowskiego 17, 60-179 Poznań, Poland ^bDept. of Physics, Kaiserslautern Univ. of Technology, D-67663 K'lautern, Germany ^cHanyang Univ., 17 Haengdang-Dong, Sungdong-gu, Seoul, 133-791 Korea

The magnetic properties of sputtered $[Ni_{80}Fe_{20}(2 \text{ nm})/Au(t_{Au})/Co(t_{Co})/Au(t_{Au})]_{15}$ multilayers with $t_{Au}=1.5$ -3 nm and $t_{Co}=0.6$ -1.5 nm were investigated with magnetic force microscopy. The NiFe layers possessed in-plane anisotropy while the sandwiching of Co layers between Au layers ensured their perpendicular anisotropy through the influence of a surface anisotropy. It led to the formation of maze configuration of stripe domains. The stripe domains period λ strongly depends on t_{Co} changing from 0.9 to 0.3 μm when t_{Co} changes from 0.6 to 0.8 nm. λ increases with the Au layers thicknesse, too. Both dependencies can be qualitatively understood by the model of Draaisma and de Jonge [1]. It describes however, a multilayer with all sublayers possessing perpendicular anisotropy with the above model is not possible. The values of stray fields acting on Py layers, in the range of 100 kA/m, estimated from magnetoresistive dependencies are in qualitative agreement with those evaluated from the model of infinitely long stripe domains with domain widths taken from magnetic force microscopy measurements.

[1] H. J. G. Draaisma and W.J.M de Jonge, J. Appl. Phys. 62, (1987) 3318

– 13.4 cm –

Subject category :

2. Magnetic Films, Surfaces, Multilayers and Nanostructures

Presentation mode : poster

Corresponding author : M. Urbaniak

Address for correspondence : Institute of Molecular Physics PAN ul. Smoluchowskiego 17, 60-179 Poznań, Poland

Email address : urbaniak@ifmpan.poznan.pl

 $9.7 \mathrm{~cm}$