DOUBLE EXCHANGE MODEL IN CUBIC VANDATES

Krzysztof Wohlfeld and Andrzej M. Oleś

Marian Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, PL-30059 Kraków, Poland

Following the idea of the double exchange (DE) mechanism, we pose a question how the C-type antiferromagnetic (AF) order (ferromagnetic chains staggered in two other directions) of undoped LaVO₃, stabilized by the superexchange spin-orbital model [1], is modified under doping. In particular, we investigate the role of the DE mechanism for stability of *metallic and antiferromagnetic* phase, which was observed experimentally in La_{1-x}Sr_xVO₃ in the range of doping 0.178 < x < 0.26. The DE model treats electrons in d_{xy} orbitals as classical S = 1/2 spins, which interact by Hund's exchange J_H with $d_{yz/zx}$ electrons in partly filled t_{2g} orbitals. Including the orbital degeneracy of doped holes and strong Coulomb repulsion U between t_{2g} electrons, we investigate the magnetic interactions and determine the phase diagram of the model using mean-field approximation and slave boson method. We demonstrate that C-type AF and metallic phase can be stabilized. The generic role of degenerate t_{2g} orbitals in the present DE model with orbital degeneracy is discussed and contrasted with the conventional DE model, which involves partly filled e_g orbitals and is used to describe doped manganites.

[1] G. Khaliullin, P. Horsch, and A. M. Oleś, Phys. Rev. Lett. 86, 3879 (2001).

— 13.4 cm —

Subject category :

1. Correlated Electrons and High Temperature Superconductors

Presentation mode :

poster

Corresponding author : Krzysztof Wohlfeld

Address for correspondence :

Marian Smoluchowski Institute of Physics Jagellonian University Reymonta 4 PL-30059 Kraków Poland

Email address : wohlfeld@th.if.uj.edu.pl

9.7 cm