SPECIFIC HEAT AND MAGNETIZATION FOR THE SEMIMETALLIC $\mathbf{Y}\mathbf{b}_4\mathbf{A}\mathbf{s}_3$

G. Kamieniarz^a, R. Matysiak^b, P. Gegenwart^c, H. Aoki^d, A. Ochiai^d

^aComputational Physics Division, Institute of Physics, A. Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland

^bInstitute of Engineering and Computer Education, University of Zielona Góra, Poland ^cMax Planck Instytute for the Chemical Physics of Solids, Dresden, Germany ^dCenter for Low Temperature Science, Tohoku University, Sendai, Japan

The S = 1/2 antiferromagnetic Heisenberg model with the transverse staggered field and uniform magnetic field perpendicular to the staggered field is applied to a semimetallic compound Yb₄As₃. The field - dependent specific heat for infinite and finite chains as well as the magnetization for infinite chains are calculated by the numerical quantum transfer-matrix method. Specific heat data for polydomain samples Yb₄As₃ and (Yb_{0.99}Lu_{0.01})₄As₃ at B = 12T are presented and compared with numerical results obtained for microscopic parameters taken from theoretical predictions. Magnetization experimental data for a single domain and polydomain sample Yb₄As₃ are also compared with our simulation results.

Subject category :

6. Theory of Magnetism

Presentation mode : oral

Corresponding author : G. Kamieniarz

Address for correspondence : Computational Physics Division, Institute of Physics, A. Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland

Email address : gjk@main.amu.edu.pl

 $9.7~\mathrm{cm}$