Electronic structure of RAg_2Ge_2 (R = Pr, Nd) compounds A. Szytuła^{*a*}, D. Kaczorowski^{*b*} and B. Penc^{*a*}

^aM. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

^bW. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box 1410, 50-950 Wrocław, Poland

The electronic structure of ternary RAg_2Ge_2 (R = Pr, Nd) compounds, which crystallize in the tetragonal $ThCr_2Si_2$ - type structure, were studied by X-ray photoemission spectroscopy. The magnetic data indicate that $PrAg_2Ge_2$ remains paramagnetic down to 1.9 K, whereas $NdAg_2Ge_2$ orders antiferromagnetically at about 2 K. The XPS results clearly show that the valence bands in both germanides consist mainly of the $Ag \, 4d$ band. The XPS spectra of Pr and $Nd \, 3d_{5/2}$ and $3d_{3/2}$ core levels were analyzed in the framework of the Gunnarsson-Schönhammer model [1] in order to derive information on the hybridization of 4f orbital with the conduction band. Separation of the XPS peaks, based on the Doniach-Šunjić theory [2], yielded the ratio $r = I(f^{n+1})/[I(f^n) + I(f^{n+1})]$ being equal to 0.09 for $PrAg_2Ge_2$ and 0.17 for $NdAg_2Ge_2$, which corresponds to the hybridization energy of 58.1 and 84.4 eV, respectively. The obtained values indicate a stability of the 4f shell in these two compounds, in good agreement with the magnetic data.

[1] O. Gunnarson, K. Schönhammer, Phys. Rev. B, 28 (1983) 4315.

[2] S. Doniach, M. Šunjić, J. Phys. C, **3** (1970) 285.

— 13.4 cm –

Subject category :

4. Rare Earths and Actinides, Alloys and Compounds

Presentation mode : oral

Corresponding author : A. Szytuła

Address for correspondence : M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Email address :

szytula@if.uj.edu.pl

 $9.7~\mathrm{cm}$