NEW ORTHORHOMBIC MULTIFERROICS

 $R_{1-x}Y_xMnO_3 \ (R = Eu, Gd)$

V.Yu. Ivanov a , A.A. Mukhin a , V.D. Travkin a , A.S. Prokhorov a , A.M. Kadomtseva b , Yu.F. Popov b , G.P. Vorobev b , K.I. Kamilov b , and A.M. Balbashov c

^aGeneral Physics Institute of the Russian Acad. Sci., 119991 Moscow, Russia
^bMoscow State University, 119899 Moscow, Russia
^cMoscow Power Engineering Institute, 105835 Moscow, Russia

A competition of exchange interactions in orthorhombic manganites RMnO₃ induced by decreasing of the rare-earth ion ionic radii causes a sinusoidal antiferromagnetic ordering resulting in appearance of electric polarization below incommensurate-commensurate (IC-C) transition at $T_{lock} < T_N \sim 45 K$. In this work we have realized the tendency to form multiferroic states in the single crystals of substituted compounds $Eu_{1-x}Y_xMnO_3$ ($0.2 \le x \le 0.5$) and $Gd_{1-y}Y_yMnO_3$ ($0 \le y \le 0.2$). While slightly substituted ($x \le 0.1$) compounds exhibited a spontaneous transition from the IC to the canted antiferromagnetic (CAF) state at $T_{CA} < T_N$, the IC-C phase transition at $T_{lock} = 30 K$ was observed for x=0.2, followed by the transition to the CAF phase at $T_{CA} \sim 22 K$. For $x \ge 0.3$ and $y \ge 0.05$ only the IC-C transitions were found while the CAF phase disappeared at all. Various phase transitions were observed in the pulsed magnetic fields up to 250 kOe along a, b, c-axes by magnetization, magnetostriction and electric polarization measurements. The polarization showed a strong dependence on a preliminary poling in an electric field $E \sim 1500 \ V/cm$ that indicated on an existence of a spontaneous electric polarization below T_{lock} , which was suppressed by $H \parallel c$ or changed by $H \parallel a, b$.

13.4 cm —

Subject category:

1. Correlated Electrons and High Temperature Superconductors

Presentation mode:

oral

Corresponding author:

V.Yu. Ivanov

Address for correspondence:

General Physics Institute of the Russian Acad. Sci., Vailov St. 38, 119991 Moscow, Russia

Email address:

ivanov@ran.gpi.ru

 $9.7~\mathrm{cm}$