HALL EFFECT IN THE LOW CHARGE-CARRIER DENSITY FERROMAGNET UCo_{0.5}Sb₂

V. H. Tran^a, S. Paschen^b, F. Steglich^b, R. Troć^a, and Z. Bukowski^a

^aW. Trzebiatowski Institute for Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland

^bMax-Planck Institut für Chemische Physik fester Stoffe, D-01187

Dresden, Germany

9.7 cm

The Hall coefficient R_H of ferromagnetic UCo_{0.5}Sb₂ ($T_C = 74.5$ K) has been measured on a single crystal in the temperature range 2 - 300 K and in magnetic fields up to 7 T. The values of the normal R_0 and anomalous R_s coefficients were estimated by comparing the $R_H(B)$ with magnetization M(B) data. Both $-R_0$ and R_s show a maximum near T_C and a minimum at $T_{min} \approx 20$ K. Below T_{min} , R_0 and R_s tend to a saturation. The ratio R_s/R_0 reaches a value of ~ 1000 for $T \leq T_C$ and of ~ 21000 at higher temperatures, implying that R_H is dominated by R_s . The negative sign of R_0 is found to be unchanged down to 2 K, which is indicative of electron-type carriers. The carrier concentration n_e $= |1/eR_0|$ is found to decrease rapidly when the system undergoes the ferromagnetic ordered state, i.e., it varies from 0.785 e/f.u in the paramagnetic state to about 0.024 e/f.u at 2 K. The charge mobility μ_e was evaluated from the $R_H(1T)$ and electrical resistivity ρ values. $\mu_e = R_H(1T)/\rho$, passes over a maximum ($\approx 450 \text{ cm}^2/\text{Vs}$) at T_{min} and falls down by as many as two orders of magnitude for $T = 2 \text{ K} (\approx 3.7 \text{ cm}^2/\text{Vs})$. Since the effective mass $m^* = 3\gamma \hbar^2 / (3\pi^2 n_e)^{1/3} k_B^2$ shows weak temperature dependence (from 53.8 m_e at T_{min} to 69.5 m_e at 2 K), the decline in μ_e with decreasing temperature seems to be associated with an enormous decrease of the carrier collision time.

— 13.4 cm –

Subject category :

1. Correlated Electrons and High Temperature Superconductors

Presentation mode : oral

Corresponding author : V. H. Tran

Address for correspondence :

Inst. of Low Temp. Polish Acad. of Sci., 50-950 Wroclaw, Poland

Email address :

whtran@int.pan.wroc.pl