MICROSCOPIC THEORY OF MAGNETIC INTERACTIONS IN KCuF₃ AND LaMnO₃ — THE ROLE OF CHARGE TRANSFER

A. M. $Oleś^{a,b}$, L. F. Feiner^c, P. Horsch^b, and G. Khaliullin^b

^aMarian Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, PL-30059 Kraków, Poland

^bMax-Planck-Institut FKF, Heisenbergstrasse 1, D-70569 Stuttgart, Germany ^cPhilips Research Laboratories, NL-5656 AA Eindhoven, The Netherlands

Magnetic interactions in correlated insulators with orbital degrees of freedom are described by superexchange spin-orbital models, which are characterized by nontrivial quantum effects [1]. We analyze the spin interactions in A-type antiferromagnetic phase of KCuF₃ with one hole in e_g orbital (S = 1/2) and of LaMnO₃ with $t_{2g}^3 e_g$ high-spin (S = 2) electronic configuration. The spin exchange constants along cubic axes J_{ab} and J_c sensitively depend on three parameters: (i) overall energy scale $J = 4t^2/U$, where t is $(dd\sigma)$ hopping and U is on-site Coulomb repulsion, (ii) the Hund's exchange $\eta = J_H/U$, and (iii) the parameter $R = 2U/(2\Delta + U_p)$, where Δ and U_p are charge transfer (CT) energy and Coulomb repulsion on oxygen, and (iv) on the e_g orbital order. One finds that quasi one-dimensional spin interactions $J_c \gg |J_{ab}|$ in KCuF₃ are intrinsically related to its CT type insulating state. On the contrary, the effects of CT superexchange terms are moderate in a Mott insulator LaMnO₃. Finally, using partial optical sum rules [2], we discuss experimental constraints on the microscopic parameters of LaMnO₃.

[1] L. F. Feiner, A. M. Oleś, and J. Zaanen, Phys. Rev. Lett. **78**, 2799 (1997).

[2] G. Khaliullin, P. Horsch, and A. M. Oleś, Phys. Rev. B 70, 195103 (2004).

-13.4 cm -

Subject category :

1. Correlated Electrons and High Temperature Superconductors

Presentation mode : oral

Corresponding author : Andrzej M. Oleś

Address for correspondence : Instytut Fizyki UJ, Reymonta 4, PL-30059 Kraków

Email address : a.m.oles@fkf.mpg.de

9.7 cm