INFLUENCE OF CHEMICAL SUBSTITUTIONS ON ANISOTROPIC UPPER CRITICAL FIELD IN MgB_2 : IMPACT OF FERMI SURFACE CHANGES

R. Puzniak^a, A. Wisniewski^a, J. Jun,^b, S.M. Kazakov^b, J. Karpinski^b
^aInstitute of Physics, Polish Academy of Sciences, PL 02-668 Warsaw, Poland
^bSolid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland

Specific band structure of MgB₂, with two bands π and σ involved in superconductivity, leads to high critical temperature, T_c , of 39 K and temperature and field dependent anisotropy of superconducting parameters. Chemical substitutions lead to modification of band structure and therefore influence all superconducting parameters, especially T_c , the upper critical field, H_{c2} , and its anisotropy, γ_H . Magnetic investigations of $Mg_{1-x}Al_xB_2$ crystals show the slight increase of $H_{c2||c}$ for the samples with small x, significant reduction of γ_H at lower temperatures for Al substituted samples as compared to this of unsubstituted crystals. In $Mg(B_{0.94}C_{0.06})_2$ single crystals $H_{c2||c}(0) \cong 85$ kOe is more than twice as large as that one of \cong 31 kOe in unsubstituted MgB₂. Anisotropy of H_{c2} decreases to about 4 at low temperatures, the value considerably lower than that in MgB₂, and its temperature dependence is much less pronounced. The corresponding $H_{c2||ab}(0) \approx 330-350$ kOe is likely close to the maximum enhancement of H_{c2} due to chemical substitutions. The enhancement of H_{c2} can be explained as a disorder effect only if the main result of disorder is to make the π bands more dirty while not affecting the σ bands as much. However, in addition to disorder and weakened electron-phonon coupling, the impact of the Fermi level shifting into a region with lower σ Fermi surface velocities has to be taken into account in the analysis of H_{c2} data as well.

← 13.4 cm —

Subject category:

1. Correlated Electrons and High Temperature Superconductors

Presentation mode:

oral

Corresponding author:

Roman Puzniak

Address for correspondence :

Institute of Physics Polish Academy of Sciences Al. Lotnikow 32/46 02-668 Warsaw Poland

Email address:

puzni@ifpan.edu.pl

 $9.7~\mathrm{cm}$