PRESSURE EFFECTS ON MAGNETIC PROPERTIES OF MANGANITES NEAR PERCOLATION THRESHOLD

A. Wisniewski^a, R. Puzniak^a, V. Markovich^b, I. Fita,^{a,c}, Ya.M. Mukovskii^d

 $^a {\rm Institute}$ of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, PL 02-668 Warsaw, Poland

^bDepartment of Physics, Ben-Gurion University of the Negev, P.O.Box 653, 84105 Beer-Sheva, Israel

^cDonetsk Institute for Physics and Technology, NAS, R. Luxemburg str. 72, 83114 Donetsk, Ukraine

^dMoscow State Institute of Steel and Alloys, 11991 Moscow, Russia

Effects of hydrostatic pressure up to 11 kbar on magnetic properties of $La_{1-x}Ca_xMnO_3$ (x = 0.18, 0.20, 0.22) and $Pr_{1-x}Sr_xMnO_3$ (x = 0.22, 0.24, 0.26) single crystals were studied near percolation threshold x_c which is observed at x = 0.22 and at x = 0.24 for La and Pr based manganites, respectively. In both systems magnetic ordering temperature T_c of the Mn spin sublattice increases upon applying the pressure. The pressure coefficient dT_c/dP for both systems enhances significantly near x_c and then the changes are much smaller with increasing doping. It was found that in the case of $Pr_{1-x}Sr_xMnO_3$ system the nature of the ferro-to-paramagnetic transition of the Mn spin system evaluates with increasing doping from a continuous second order transition ($x < x_c$) to a more abrupt first order-like transition ($x > x_c$). For $Pr_{0.76}Sr_{0.24}MnO_3$ sample an applied pressure changes the character of the phase transition from nearly a continuous one at P = 0 to more abrupt, almost discontinuous one at P = 11 kbar.

Subject category :

1. Correlated Electrons and High Temperature Superconductors

Presentation mode : oral

Corresponding author : Andrzej Wisniewski

Address for correspondence :

Institute of Physics Polish Academy of Sciences Al. Lotnikow 32/46 02-668 Warsaw Poland

Email address : wisni@ifpan.edu.pl

9.7 cm