PHASE DIAGRAM OF HEAVILY DOPED (x > 0.5) La_{1-x}Sr_xMnO₃

A. Szewczyk,^a M. Gutowska,^a and B. Dabrowski^b

^aInstitute of Physics, Polish Academy of Sciences, Warsaw, Poland ^bDepartment of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

A vast majority of research of $La_{1-x}Sr_xMnO_3$ manganites was done for x < 0.5. Data on $0.5 < x \le 1$ materials are sparse because of inherent difficulty in synthesizing them. The occurrence of a rich phase diagram for x > 0.5 was evidenced by structural and magnetic measurements. For the present, first specific heat studies of x = 0.55, 0.7, and 0.9compositions, highly stoichiometric samples were prepared. Specific heat was measured from 2 K to 395 K on heating and on cooling, in zero magnetic field and in B = 7 T. Orders of particular phase transitions and specific heat anomalies accompanying them were studied. For x = 0.55, the second order paramagnet-ferromagnet phase transition, visible as the λ -anomaly at 267 K, and the first-order transition from ferromagnetic to Atype antiferromagnetic state, associated with the structural transition from a tetragonal to an orthorhombic structure, were observed. The latter, visible as a δ -type anomaly at 216 K, was very sensitive to magnetic field (7 T lowered the transition temperature by 26 K). For x = 0.7 and 0.9, the second-order transition from the paramagnetic to the C-type antiferromagnetic state, occurring at 265 K and 205 K, respectively, was studied. For x = 0.7, it was a purely magnetic transition, whereas for x = 0.9, it was coupled with the structural transition from a cubic to a tetragonal phase.

– 13.4 cm –

Subject category :

1. Correlated Electrons and High Temperature Superconductors

Presentation mode : oral

Corresponding author : Andrzej Szewczyk

Address for correspondence : Institute of Physics Polish Academy of Sciences Al. Lotnikow 32/46 02-668 Warsaw Poland

Email address : szewc@ifpan.edu.pl

9.7 cm