Magnetic Properties of Nonstoichiometric and Substituted SrRuO₃

B. Dabrowski,

Physics Department, Northern Illinois University, DeKalb, IL 60115, USA

SrRuO₃ has been known for half a century as a strongly-correlated ferromagnetic metal and proposed for use as an electrode material in micro- and nano-electronic circuits. We have discovered that annealing of stoichiometric SrRuO₃ perovskites in high-pressure oxygen produces SrRu_{1-v}O₃ compounds with vacancies on the Ru-sites. The creation of Ru vacancies rapidly suppresses ordered moment per Ru from 1.6 to 0.8 μ_B and the ferromagnetic ordering temperature, *T_C*, from 163 K to 45 K with increase of v ≈ 0.09, whereas the resistivity increases. Subtle structural changes that accompany creation of Ru-site vacancies are different from the typical properties of transition metal perovskites, for which an increased formal oxidation state of the B-site cations normally leads to decreased B-O interatomic distances and contraction of the unit cell volume. The reduced charge screening caused by the Ru-vacancies offsets expected decrease of the average interatomic distance Ru-O and rotation of the RuO₆ octahedra as Sr atoms relax toward Ru-vacancies increases observed volume. Local probes of Ru with XANES, NMR, and EELS find no valence change while isomer shifts of ⁹⁹Ru from Mossbauer experiments reveal a small change from +4 toward +5 as the T_C decreases.

By using "design rules" of the synthesis and magnetic interactions for perovskites we have established that Cr substitution into Ru site of SrRuO₃ increases T_C to 188 K at the solubility limit of 12%. The ⁵³Cr and ^{99,101}Ru NMR studies reveal that the electronic configurations of Cr and Ru are 3d³ (t_{2g}^{3†}) and 4d⁴ (t_{2g}^{3†1↓}), respectively. Compared with SrRuO₃, the spin-down electron in Ru 4d shell is more itinerant in SrRu_{0.875}Cr_{0.125}O₃ which is consistent with a broadened conduction band and a possible minority band Cr(d³)-O²⁻-Ru(d⁴) double-exchange-like interaction. The exchange interaction involves the Cr³⁺ into the ferromagnetic ordering and enhances the ordering temperature. This picture is supported by a steady decrease of the ordered moment per Ru/Cr.

Neutron powder diffraction analysis revealed that below $T_c = 163$ K the *b* and *c* lattice parameters and the unit cell volume are virtually temperature independent for the stoichiometric material. We show that this previously reported invar-effect below the ferromagnetic ordering temperature originates from freezing of the octahedral tilting about the [001] axis. The invar-effect is much less pronounced in the Ru-deficient samples with decreased T_c 's = 135 K and 82 K. We show that the invar-effect gradually disappears also for the Cr-substituted samples with increased T_c 's.

Supported by the NSF-DMR-0302617 and by the US Department of Education

This research was conducted in collaboration with O. Chmaissem, S. Kolesnik, P.W. Klamut, S. Mini, Y. Ito, M. Maxwell, J. Mais, and T. Maxwell, Physics Department, Northern Illinois University, DeKalb, IL 60115, USA; J.D. Jorgensen, M. Avdeev, P. Barnes, and S. Short, Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA; Z.H. Han, J.I. Budnick, and W.A. Hines, Department of Physics, University of Connecticut, Storrs, CT 06269, USA; M. De Marco, D. Coffey, and R. Heary, Physics Department, Buffalo State College, Buffalo, New York 14222, USA; S. Toorongian and M. Haka, Nuclear Medicine Department, State University of New York, Buffalo 14260, USA.