Ising-like model for the two-step spin-crossover systems: Static properties with magnetic field effects using cluster variation method

Valon Veliu	Rıza Erdem	Songül Özüm	Orhan Yalçın
Faculty of Electrical and Computer Engineering University of Prishtina "Hasan Prishtina" 10000 Prishtinë, Kosovo	Department of Physics Akdeniz University 07058 Antalya, Turkey	Alaca Avni Çelik Vocational School Hitit University 19600 Çorum, Turkey	Department of Physics Ömer Halisdemir University 51240 Niğde, Turkey

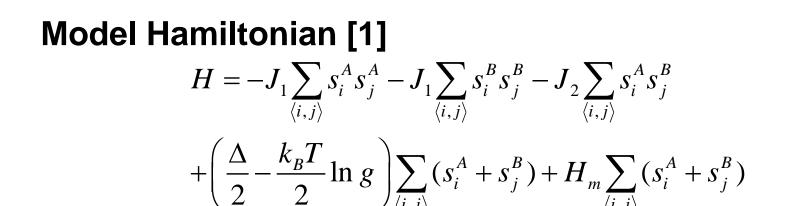
Abstract

We investigate the static properties of a two-sublattice Ising-like Hamiltonian for spin-crossover (SCO) systems [1-4] in the presence of an external magnetic field. Self-consistent equations are obtained using cluster variation method in the lowest approximation [5]. From the solutions of these equations, we present high-spin state fraction vs. temperature and magnetic field variations for various values of the degeneracy ratio between high-spin and low-spin states (re). It is shown that two metastable and one unstable (or saddle) branches in the SCO region are displayed in the re > 1 case while the metastable states disappear and only one saddle point occurs when re =1. However, only stable states are obtained at high temperatures outside the SCO region. The comparison of our results to other theoretical treatments is also given.

Introduction

Self-consistent equations :

Eigenvalues state:


-400 -200 0 200 400 -400 -200 0 200 400

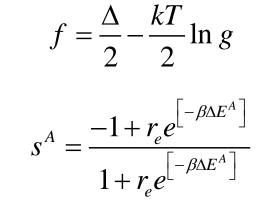
1.0

In recent years, spin-crossover (SCO) materials have become attractive with potential application on many area such as memoris, sensors, switches and imaging systems. For this reason, studies focused on both spin-crossover (SCO) and magnetic order. These materials have become interesting in nature due to the phase transition behaviors that occur between the low-spin (LS) diamagnetic state and the high-spin (HS) paramagnetic state under induced such as temperature, pressure, magnetic field, and light. We consider the two-equivalent sublattices which are coupled antiferromagnetically.

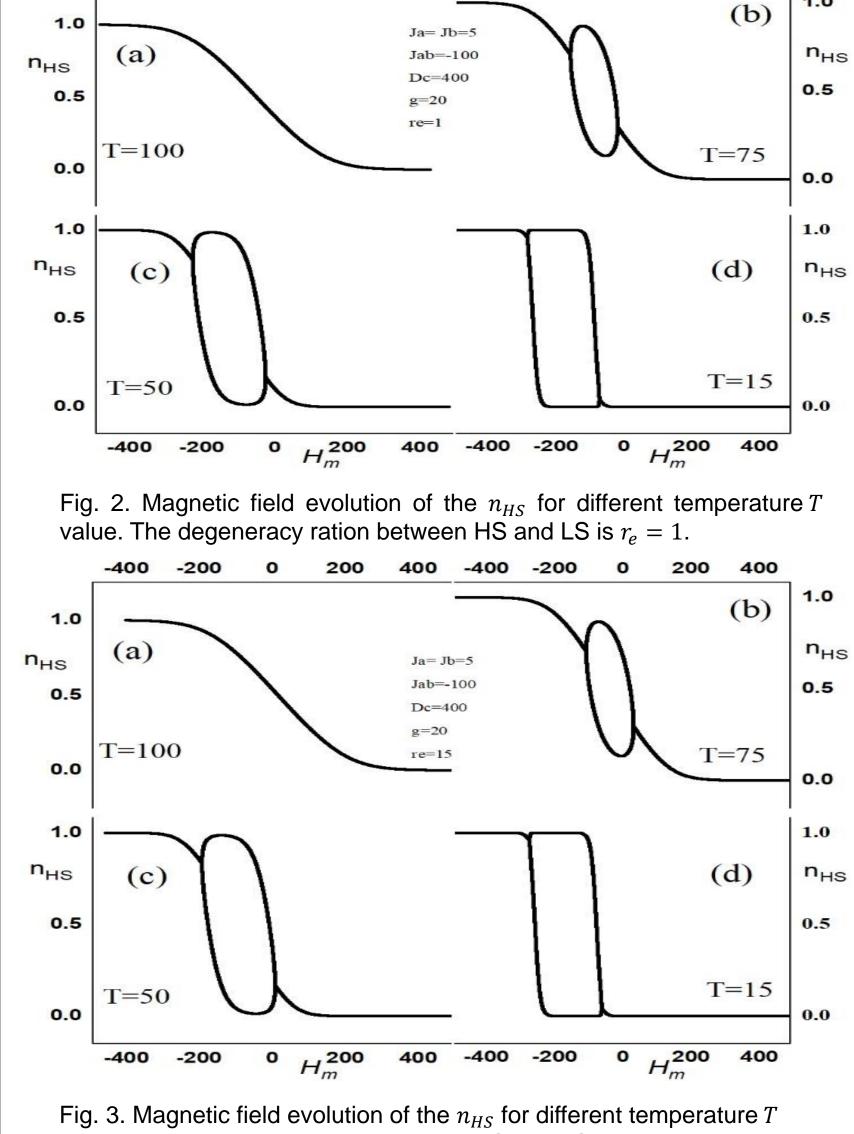
Both sublattices are in HS state at high temperature and in LS state at low temperature, but at intermediate temperature the sublattices have different state.

Model&**Methods**

 $s^{A} = \frac{e^{\beta(-2J_{1}s^{A} - J_{2}s^{B} + f + H_{m})} - e^{\beta(2J_{1}s^{A} + J_{2}s^{B} - f - H_{m})}}{e^{\beta(-2J_{1}s^{A} - J_{2}s^{B} + f + H_{m})} + e^{\beta(2J_{1}s^{A} + J_{2}s^{B} - f - H_{m})}}$ $s^{B} = \frac{e^{\beta(-2J_{1}s^{B}-J_{2}s^{A}+f+H_{m})} - e^{\beta(2J_{1}s^{B}+J_{2}s^{A}-f-H_{m})}}{e^{\beta(-2J_{1}s^{B}-J_{2}s^{A}+f+H_{m})} + e^{\beta(2J_{1}s^{B}+J_{2}s^{A}-f-H_{m})}}$

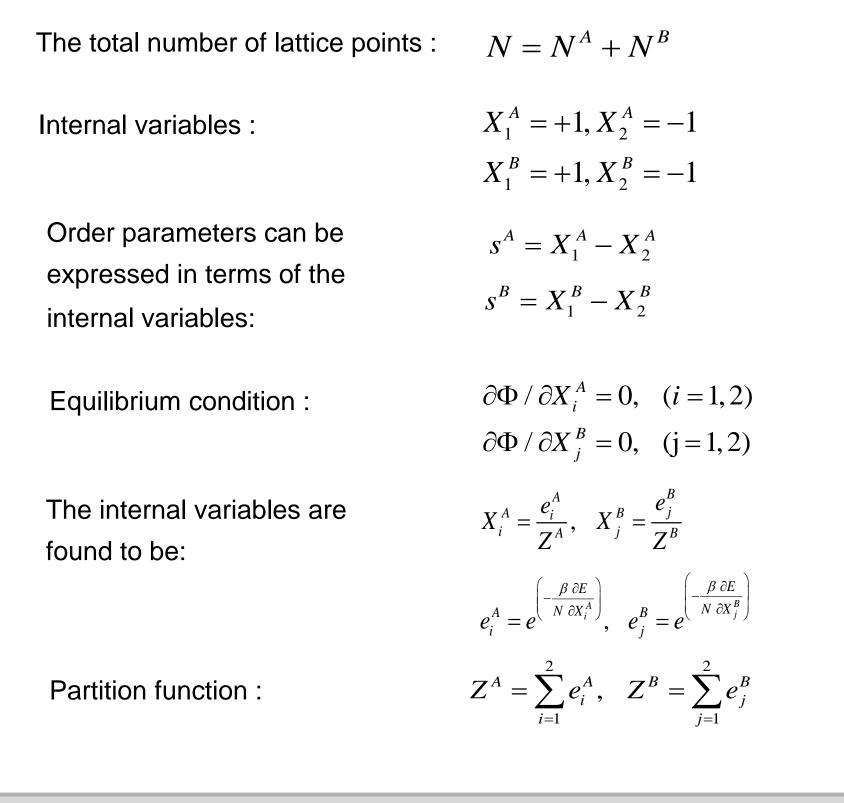

Boltzmann statistics for two possible value of the fictitious spin is applied [4]:

$$s^{A} = \frac{-1 + \frac{Z_{HS}^{A}}{Z_{LS}^{A}}}{1 + \frac{Z_{HS}^{A}}{Z_{LS}^{A}}}, \quad s^{B} = \frac{-1 + \frac{Z_{HS}^{B}}{Z_{LS}^{B}}}{1 + \frac{Z_{HS}^{B}}{Z_{LS}^{B}}}$$


$$Z_{LS}^{A} = g_{LS}e^{-\beta E_{-}^{B}}, \quad Z_{HS}^{A} = g_{HS}e^{-\beta E_{+}^{B}}$$
$$Z_{LS}^{B} = g_{LS}e^{-\beta E_{-}^{B}}, \quad Z_{HS}^{A} = g_{HS}e^{-\beta E_{+}^{B}}$$

$$\begin{pmatrix} E_{-}^{A} = 2J_{1}s^{A} + J_{2}s^{B} - f - H_{m} \\ E_{+}^{A} = -2J_{1}s^{A} - J_{2}s^{B} + f + H_{m} \end{pmatrix}$$

$$E_{-}^{B} = 2J_{1}s^{B} + J_{2}s^{A} - f - H_{m}$$
$$E_{+}^{B} = -2J_{1}s^{B} - J_{2}s^{A} + f + H_{m}$$



 $-1 + r_{e}e^{l}$

value. The degeneracy ration between HS and LS is $r_e = 15$.

$\langle \mathcal{L} \rangle \langle i, j \rangle \langle i, j \rangle$	$ j\rangle$	$ \begin{bmatrix} -\beta \Delta E^B \end{bmatrix} $	
Spin variable or order parameters:	$s^{A}, s^{B} = -1, +1$	$1 + r_e e^{\left[-\beta \Delta E^B\right]}$	a) ^{1.0}
Nearest-neighbour spins:	< <i>i</i> , <i>j</i> >	Effective degeneracy ratio : $r_e = \frac{g_{HS}}{g_{LS}}$	
Bilinear interaction (intrasublattice interaction), J_1	>1 (ferro)) : J_1	$\Delta E^A = -4J_1s^A - 2J_2s^B + 2f + 2H_m$	
Bilinear interaction (intersublattice interaction), J_2	<1 (antiferro) : J_2		5° 0.0 -0.2
Ligand-field energy :	$\Delta = D_c$	$\Delta E^{B} = -4J_{1}s^{B} - 2J_{2}s^{A} + 2f + 2H_{m}$	
External magnetic field :		Fraction of n_{HS} molecules : $n_{HS} = \frac{m_F + 1}{2}$	-0.8 -1.0
Temperature :	T		-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 S _a
Boltzmann constant :	k_B	$m_F = \frac{s^A + s^B}{2}$	b) 1.0
Degeneracy :	g		0.6
Degeneracy : Cluster Variation Method in the Lowe Approximation [5]		Results & Discussion	
Cluster Variation Method in the Lowe Approximation [5]Free energy : $\Phi = \frac{\beta F}{N} = \frac{\beta}{N}(E-T)$	est	Results & Discussion High-spin state fraction vs. temperature and magnetic field variations	$ \begin{bmatrix} 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ -0.2 \\ -0.4 \\ -0.4 \\ -0.6 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\$
Cluster Variation Method in the Lower Approximation [5] Free energy : $\Phi = \frac{\beta F}{N} = \frac{\beta}{N} (E - T)$ Internal energy : $\frac{E}{N} = -J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) - J_1 \left(X_1^B - X_2^B \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^B \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^$	est TS_E), $\beta = 1/k_B T$ $X_1^B - X_2^B$	High-spin state fraction vs. temperature and	-0.2 -0.4
Cluster Variation Method in the Lower Approximation [5] Free energy : $\Phi = \frac{\beta F}{N} = \frac{\beta}{N} (E - T)$ Internal energy : $\frac{E}{N} = -J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) - J_1 \left(X_1^B - X_2^B \right) \left(X_1^A - X_2^A \right) - J_2 \left(X_1^A - X_2^A \right) \left(X_1^B - X_2^B \right) + \left(\frac{\Delta}{2} - \frac{k_B T}{2} \ln g \right) \left[\left(X_1^A - X_2^A \right) \right]$	est TS_E), $\beta = 1/k_B T$ $X_1^B - X_2^B$	High-spin state fraction vs. temperature and	$\begin{array}{c} -0.2 \\ -0.4 \\ -0.6 \\ -0.8 \\ -1.0 \\ -1.0 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0.0 \\ -0.2 \\ 0.4 \\ -0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ S_a \end{array}$
Cluster Variation Method in the Lower Approximation [5] Free energy : $\Phi = \frac{\beta F}{N} = \frac{\beta}{N} (E - T)$ Internal energy : $\frac{E}{N} = -J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) - J_1 \left(X_1^B - X_2^B \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^B \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^A \right) \left(X_1^A - X_2^A \right) = J_1 \left(X_1^A - X_2^$	est $FS_E, \beta = 1/k_B T$ $K_1^B - X_2^B$ $-X_2^A + (X_1^B - X_2^B)$	High-spin state fraction vs. temperature and magnetic field variations	$\begin{array}{c} -0.2 \\ -0.4 \\ -0.6 \\ -0.8 \\ -1.0 \\ -1.0 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0.0 \\ -0.2 \\ 0.4 \\ -0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ S_a \end{array}$

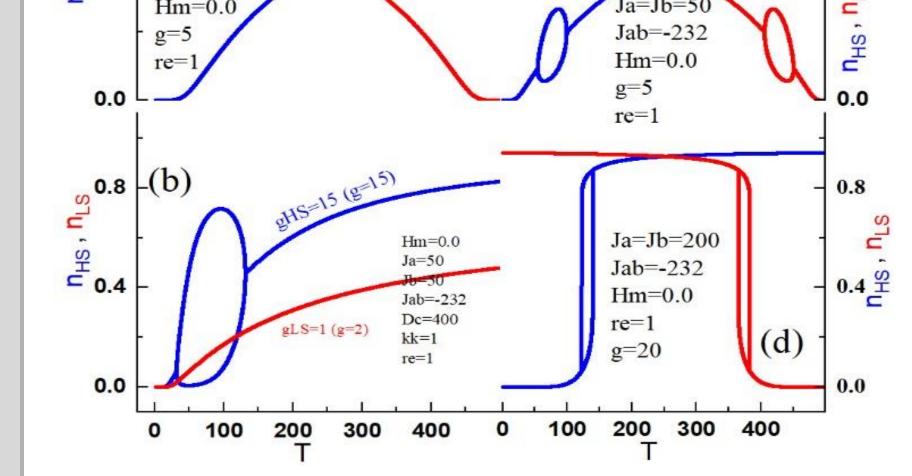


Fig. 1 Comparison of the n_{HS} and n_{LS} by temperature, (a) and (c) for different $J_{ab} = J_2$ (intersublattice interaction) value. (b) and (d) for different $J_a = J_1$, $J_b = J_1$ and g value. For all degeneracy figures ration between HS and LS is $r_e = 1$.

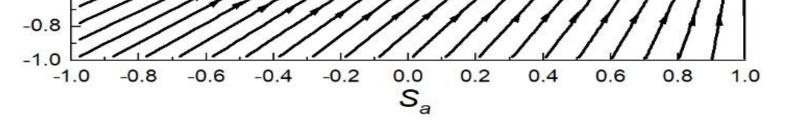


Fig. 4a. The flow diagram of S_a and S_b , and temperature T = 58K. The open circle corresponds to the stable state and filled circle corresponds to the unstable state.

Fig. 4b. The flow diagram of S_a and S_b , and temperature T = 300K. The open circle corresponds to the stable state and filled circle corresponds to the unstable state.

Fig. 4c. The flow diagram of S_a and S_b , the open circle corresponds to the stable state and temperature T = 300K for the degeneracy ratio re = 15.

References

[1] K. Boukheddaden, J. Linares, E. Codjovi, F. Varret, V. Niel, J.A. Real, Journal of Applied Physics 93, 7103, (2003) [2] A. Bousseksou J. Nasser J. Linares, K. Boukheddaden, F. Varret, J. Phys. I France 2, 1381, (1992) [3] A. Bousseksou, F. Varret, J. Nasser, J. Phys. I France 3, 1463, (1993) [4] R. Boča, W. Linert, Monatshefte für Chemie /Chemical Monthly, 134, 199–216 (2003) [5] M. Keskin, R. Erdem, Journal of Statistical Physics, 89, 1035–1046 (1997)