

The European Conference PHYSICS OF MAGNETISM 2021 (PM'21) June 28 - July 2, 2021 Poznań, POLAND

Magnetic interactions and spin dynamics of the ⁵³Cr in the orthosilicate host crystals

R. Likerov¹, K. Konov¹, A. Sukhanov¹, I. Yatsyk¹ and V. Tarasov¹

¹Zavoisky Physical - Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Trakt - 10/7, 420029 Kazan, Russia

 ${}^{53}\text{Cr}^{3+}\text{Y}_2{}^{28}\text{SiO}_5$ monocrystals are considered as promising materials for quantum memory applications^[1,2]. By using the isotopically pure impurity ions ${}^{53}\text{Cr}^{3+}$ the high density of optical resonance medium is achieved. Also, the inhomogeneous linewidth of the resonance transition can be decreased if the host crystal is formed with monoisotopic ${}^{28}\text{Si}$ compare to silicon with natural abundance due to the non-zero nuclear spin I = 1/2 of ${}^{29}\text{Si}$ isotope and its interaction with nuclear and electron spin of the ${}^{53}\text{Cr}^{3+}$ impurity ions.

 Y_2SiO_5 belongs to monoclinic symmetry group $C_{2/c}$ with two Y positions: Y1 [YO₇] and Y2 [YO₆]. Cr³⁺ ions substitute Y³⁺ ions in Y2 site.

Lattice parameters ^[3]							
a, Å	b, Å	c, Å	β,°				
10.41	6.721	12.49	102.65				

Cr has 4 stable isotopes: 50 Cr (4.345%), 52 Cr (83.789%), 53 Cr (9.501%) and 54 Cr (2.365%). 53 Cr has I = 3/2.

In order to analyze experimental orientational dependencies the following Hamiltonian was used^[4]:

$$\mathcal{H} = \mu_{\beta e} (\mathbf{H} \cdot \mathbf{g} \cdot \mathbf{S}) + \mathbf{S} \cdot \mathbf{D} \cdot \mathbf{S} + \mathbf{S} \cdot \mathbf{A} \cdot \mathbf{I} - \mu_{\beta n} g_n (\mathbf{H} \cdot \mathbf{I})$$

Model parameters:

g: $g_x = g_y = g_z = 1.967$; **A**: $A_x = A_y = A_z = 52.4$ MHz; **D**: $D_x = -3.162$ GHz, $D_y = -13.758$ GHz, $D_z = 16.921$ GHz

[1] S. Welinski, A. Tiranov, M. Businger, A. Ferrier, M. Afzelius, P. Goldner, Phys. Rev. X 10, 031060 (2020). DOI: 10.1103/PhysRevX.10.031060
[2] N. Kukharchyk, D. Sholokhov, O. Morozov, S. L. Korableva, A. A. Kalachev, P. A. Bushev, Optics Express 28, pp. 29166-29177 (2020). DOI: 10.1364/OE.400222
[3] B.A. Maksimov, Yu.A. Kharitonov, V.V. Ilyukhin, N.V. Belov, Sov. Phys. Dokl. 13, 1188-1190 (1969).
[4] Sukhanov, A.A., Tarasov, V.F., Likerov, R.F. *et al. Appl Magn Reson* (2021). DOI: 10.1007/s00723-021-01366-7

 ${}^{53}\text{Cr}^{3+}$:Y ${}^{28}\text{SiO}_5$ monocrystals are considered as promising materials for quantum memory applications^[1,2]. By using the isotopically pure impurity ions ${}^{53}\text{Cr}^{3+}$ the high density of optical resonance medium is achieved. Also, the inhomogeneous linewidth of the resonance transition can be decreased if the host crystal is formed with monoisotopic ${}^{28}\text{Si}$ compare to silicon with natural abundance due to the non-zero nuclear spin I = 1/2 of ${}^{29}\text{Si}$ isotope and its interaction with nuclear and electron spin of the ${}^{53}\text{Cr}^{3+}$ impurity ions.

 Y_2SiO_5 belongs to monoclinic symmetry group $C_{2/c}$ with two Y positions: Y1 [YO₇] and Y2 [YO₆]. Cr³⁺ ions substitute Y³⁺ ions in Y2 site.

Lattice parameters ^[3]					
a, Å	b, Å	c, Å	β,°		
10.41	6.721	12.49	102.65		

Cr has 4 stable isotopes: 50 Cr (4.345%), 52 Cr (83.789%), 53 Cr (9.501%) and 54 Cr (2.365%). 53 Cr has I = 3/2.

In order to analyze experimental orientational dependencies the following Hamiltonian was used^[4]:

$$\mathcal{H} = \mu_{\beta e}(\mathbf{H} \cdot \mathbf{g} \cdot \mathbf{S}) + \mathbf{S} \cdot \mathbf{D} \cdot \mathbf{S} + \mathbf{S} \cdot \mathbf{A} \cdot \mathbf{I} - \mu_{\beta n} g_n(\mathbf{H} \cdot \mathbf{I})$$

Model parameters: $g: g_x = g_y = g_z = 1.967;$ $A: A_x = A_y = A_z = 52.4 \text{ MHz};$ $D: D_x = -3.162 \text{ GHz}, D_y = -13.758 \text{ GHz}, D_z = 16.921 \text{ GHz}$ Energy level scheme of electron spin transitions for Cr³⁺ plane ac

Orientational dependencies of interdoublet transitions in plane ac

