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• One channel Kondo model (1CK) effectively describe single impurity in bulk or connected to same leads, DMFT lattice models mapped on impurity model, adatom 

on surface, qubit in environment etc. 
• Multichannel (two channel in our case, 2CK) Kondo model describe single impurity connected to multiple bands or many impurities connected to leads, there is 

mapping of 1CK models in presence of external fields to 2CK model [5] 
• 1CK show Fermi liquid behaviour (with energy scale TKondo), while in 2CK there could be many energy scales [6] and non-Fermi liquid behaviour near critical point 

with possible quasiparticle spectrum such as Majorana modes  
• Kondo model in nonequilibrium denotes open systems in presence of external fields, temperature reservoirs etc. 
• Quenches are possible way to change Hamiltonian in time resulting in modified electronic structure and dynamics between initial and final state. They could be 

used for modelling of nonequilibrium effects in closed systems [8] 
 

Fig. Electrical resistivity of Au metal with impurities   

Fig. Scheme of log. discretized metallic band and 
Wilson chain with exponentially decaying hopping 

  

• In the 1CK with J-quench, the Loschmidt echo decay to 0 in appropriate time scale. The larger the quenched coupling the faster echo decays 

• In the presence of fixed local magnetic field echo decays slower and not always to 0 at studied time scales if J-quench is small enough 

• For values of fixed B around TK for constant quenched J, echo functions are dropping to some finite nonzero value at studied time scales, are more oscillatory and Sz(t) exhibits local extrema before saturating to some finite value 

• Larger fixed B field results in more flat echos starting from small time scales and J-quenching is reduced  

• For simultaneuos J and B quench, when J are smaller than B, the echos are forming local minimum pinned at one time scale 

• Adding second channel results in similar echo to 1CK only when J2 (quenched) is larger than constant J1 

• For smaller J2<J1 quenching effect is suppressed by first channel 

• Around nonFermi liquid point (J2=J1) echo curves are grouped and behaves more like in the 1CK+fixedB case but the curve decay more monotonically, it has no inflection points in studied scale 

• Fixed B of sufficient strength destroys nFL behavior and echos start to resemble the ones in 1CK+fixB case 
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• Finding correspondence between dynamics of 1CK and 2CK models 

• Study of time evolution of relevant physical quantities 

• Measuring the ability of system to return to its initial state after quenching 

• Taking into account effect of magnetic field  
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• discrete quantum system in presence of continuum of states (fermionic or bosonic bath) 

• scattering of conduction electrons in a metal due to magnetic impurity (s-d scattering) 

• perturbation theory predicts that scattering rate diverges at low temperatures  

• asymptotic freedom – coupling becomes nonperturbatively strong at low energies and low T 

• Renormalization group approach successfully describe low temperature limit 

• limiting case (Schrieffer-Wolff transf.) of Anderson impurity model in strong coupling regime 

ABSTRACT 

We have studied dynamical properties of one-channel and two-channel Kondo systems after different quenches in 
Hamiltonian variables. Electronic structure of initial Hamiltonian (before quench) and final Hamiltonian (after quench) was 
calculated using density matrix numerical renormalization group method implemented using matrix product states formalism 
[1]. We show spectral properties and static averages of operators of impurity local variables. Quench dynamics was studied as 
real-time evolution of operators of interest calculated as time-dependent expectation values. We study behavior of Loschmidt 
echo, measuring the possibility of revival of system to its initial state after some quench.  

We have considered multiple quench protocols in Kondo systems as for example: switching on/off the Kondo couplings 
between impurity and metallic band states, varying of J coupling to one channel while keeping constant the second one, or 
simultaneous quench of both coupling constants. Particularly interesting is class of quenches around non-Fermi liquid critical 
point in two-channel model (i.e. J1=J2). We systematically study quenches of varying strength from very small (aka continuous 
quench limit [2]) to large ones (discrete, pulse-like quenches) focusing on dependence of system response due to quench on the 
boundary conditions.  

Furthermore we study such dynamics in the presence of applied external magnetic field of different intensities, also in the 
case with quenches of B field itself. We have also discussed stability of system properties with the increase of temperature. 
Finally we have computed conductance for most relevant examples above, showing the influence of dynamics and stability of 
Kondo correlated state on current properties.  

KONDO EFFECT 

BACKGROUND 
PHASE TRANSITIONS 

GOALS 

• NRG method based on Wilson idea of mapping of Kondo Hamiltonian on semi-infinite chain 

and solving it iteratively [9] 

• Using the set of complete basis of discarded states 

• Employing Denisty Matrix formalism to account for precise ground state 

• Calculating spectral functions as retarded Green function 

• TDNRG to calculate dynamics and time evolution of operators [1] 

• Parameters of calculations: Λ=2; nr of kept states=1024 (1CK) 4096 (2CK), nr of NRG 

iterations=80  

                                           

METHOD 
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STATIC PROPERTIES 

DYNAMIC PROPERTIES 

Fig. Formulas for time dependency of operator, for Loschmidt echo 
and for time evolution of quenched Hamiltonian 

CONCLUSIONS 

•  classical phase transition occurs when thermodynamic free energy exhibits 
nonanalyticity for some variables (derivative of free energy is discontinuous) 
• such thermal phase transitions are often accompanied with classical Landau symmetry-
breaking mechanism, if the system has additional topological order it could undergo 
topological phase transition  
• quantum phase transition can’t be explained by thermal fluctuations but quantum 
fluctuations since temperature is 0 and driving parameter is not temperature (pressure, 
field etc.) 
•  dynamical phase transitions occurs in real-time domain with nonanalyticities in 
critical times, such cusps are not generated using external parameter but rather by pure 
dynamics  

REFERENCES 

Normalized spectral functions of spin up composite fermion 

operator for 1CK (left) and 2CK (right) 

Results for 1CK (top from left): echo for quench in 

J (from 0 to value in legend); echo for quench in J 

with fixed B=0.00005; Sz(t) for quench in J with 

fixed B=0.00005; echo for constant quench in J (0 

to 0.2) for various fixed B; Sz(t) for constant 

quench in J (0 to 0.2) for various fixed B; echo for 

simultaneous quench in J (from 0 to value in  

legend) and B (from 0 to 0.00005) 

 

Results for 2CK 

(from left): echo 

for quench in J2 

(J1=0.2); echo for 

quench in J2 

(J1=0.2) for fixed 

B=0.00005 
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https://en.wikipedia.org/wiki/Kondo_effect
http://www.phy.bme.hu/~dmnrg/
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Fig. Scheme of log. discretized metallic band and Wilson chain with exponentially decaying hopping 

• discrete quantum system in presence of continuum of states (fermionic or bosonic bath) 

• scattering of conduction electrons in a metal due to magnetic impurity (s-d scattering) 

• perturbation theory predicts that scattering rate diverges at low temperatures  

• asymptotic freedom – coupling becomes nonperturbatively strong at low energies and low T 

• Renormalization group approach successfully describe low temperature limit 

• limiting case (Schrieffer-Wolff transf.) of Anderson impurity model in strong coupling regime 

•  classical phase transition occurs when thermodynamic free energy exhibits nonanalyticity for some variables 
(derivative of free energy is discontinuous) 
• such thermal phase transitions are often accompanied with classical Landau symmetry-breaking mechanism, if the 
system has additional topological order it could undergo topological phase transition  
• quantum phase transition can’t be explained by thermal fluctuations but quantum fluctuations since 
temperature is 0 and driving parameter is not temperature (pressure, field etc.) 
•  dynamical phase transitions occurs in real-time domain with nonanalyticities in critical times, such cusps are 
not generated using external parameter but rather by pure dynamics  
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Fig. Formulas for Wilson-Kondo Hamiltonian, time dependency of operator, for Loschmidt echo and for time evolution of quenched 
Hamiltonian 

 

• One channel Kondo model (1CK) effectively describe single impurity in bulk or 
connected to same leads, DMFT lattice models mapped on impurity model, adatom on 
surface, qubit in environment etc. 

• Multichannel (two channel in our case, 2CK) Kondo model describe single impurity 
connected to multiple bands or many impurities connected to leads, there is mapping 
of 1CK models in presence of external fields to 2CK model 

• 1CK show Fermi liquid behaviour (with energy scale TKondo), while in 2CK there could 
be many energy scales [6] and non-Fermi liquid behaviour near critical point with 
possible quasiparticle spectrum such as Majorana modes  

• Kondo model in nonequilibrium denotes open systems in presence of external fields, 
temperature reservoirs etc. 

• Quenches are possible way to change Hamiltonian in time resulting in modified 
electronic structure and dynamics between initial and final state. They could be used 
for modelling of nonequilibrium effects in closed systems  

 

•NRG method based on Wilson idea of mapping of Kondo 

Hamiltonian on semi-infinite chain and solving it iteratively  

•Using the set of complete basis of discarded states 

•Employing Denisty Matrix formalism to account for precise ground 

state 

•Calculating spectral functions as retarded Green function 

•TDNRG to calculate dynamics and time evolution of operators  

•Parameters of calculations: Λ=2; nr of kept states=1024 (1CK) 4096 

(2CK), nr of NRG iterations=80, D=1  
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KONDO EFFECT 



GOALS 

●Finding correspondence between dynamics of 1CK and 2CK models  ●Study of time evolution of relevant physical quantities 

●Measuring the ability of system to return to its initial state after quenching  ●Taking into account effect of magnetic field                                             

STATIC PROPERTIES 

Normalized spectral functions 

of spin up composite fermion 

operator for 1CK (left) and 2CK 

(right, plot for two channels) 

DYNAMIC PROPERTIES 

Results for 1CK (from left): echo for quench in J (from 0 to value in legend); echo for quench in J with fixed B=0.00005; Sz(t) for 

quench in J with fixed B=0.00005 



Results for 1CK (from left): echo for constant quench in J (0 to 0.2) for various fixed B; Sz(t) for constant quench in J (0 to 0.2) 

for various fixed B; echo for simultaneous quench in J (from 0 to value in  legend) and B (from 0 to 0.00005) 

DYNAMIC PROPERTIES 

Results for 2CK (from left): echo for quench in J2 (J1=0.2); echo for quench in J2 (J1=0.2) for fixed B=0.00005 



CONCLUSIONS 

REFERENCES 
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•In the 1CK with J-quench, the Loschmidt echo decay to 0 in appropriate time scale 

•The larger the quenched coupling the faster echo decays 

•In the presence of fixed local magnetic field echo decays slower and not always to 0 at studied time scales if            

J-quench is small enough 

•For values of fixed B around T
K
 for quenched J, echo functions are dropping to some finite nonzero value at studied 

time scales, are more oscillatory and Sz(t) exhibits local extrema before saturating to some finite value 

•Larger fixed B field results in more flat echos starting from small time scales and J-quenching is reduced  

•For simultaneuos J and B quench, when J are smaller than B, the echos are forming local minimum pinned at one 

time scale 

•Adding second channel results in similar echo to 1CK only when J
2
 (quenched) is larger than constant J

1 

•For smaller J
2
<J

1
 quenching effect is suppressed by first channel 

•Around nonFermi liquid point (J
2
=J

1
) echo curves are grouped and behaves more like in the 1CK+fixedB case but the 

curve decay more monotonically, it has no inflection points in studied scale 

•Fixed B of sufficient strength destroys nFL behavior and echos start to resemble the ones in 1CK+fixB case  
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