Structural, thermal and magnetic characterization of Al-(Ni,Cr,Cu,Y)-Fe alloys

 $\underline{\mathrm{K.~Mlynarek}},^1$ A. Radoń,^1 P. Gębara,^2 M. Kądziołka-Gaweł,^3 and R. Babilas^1

¹Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., Gliwice 44-100, Poland

²Department of Physics, Częstochowa University of Technology,

Armii Krajowej 19, 42-200 Częstochowa, Poland ³Institute of Physics. University of Silesia.

75 Pułku Piechoty 1a St., 41-500 Chorzów, Poland

Rapidly solidified aluminium alloys are promising materials which provide many beneficial properties compared to conventional Al-based alloys with crystalline structure. Better properties compared to crystalline alloys are resulted from chemical homogeneity and possibility to obtain unique structures like amorphous, quasicrystalline or nanocrystalline [1]. Improving of magnetic properties of these alloys have been described in the literature by many methods like f.e. primary crystallization of amorphous alloys [2]. Relatively good magnetic properties have been observed in Al-Fe-Ni [3] and Al-Fe-Cu [4] alloying compositions. The aim of the studies was characterization of structural, magnetic and thermal properties of aluminium alloys with Ni, Cr, Cu, Y and Fe additions. The samples were prepared with a different cooling rates by induction melting (master alloys), high-pressure casting (plates) and meltspinning (ribbons). Phase identification was analized by X-ray diffraction method. The magnetic properties were examined using vibrating sample magnetometer and Mössbauer spectroscopy. Measurements of magnetic parameters were performed at room temperature and included field of coercive force (H_c) , saturation magnetization (M_s) , magnetic remanence (M_r) which were determined from hysteresis loops by vibrating sample magnetometer in magnetic fields up to 20 kOe. The ⁵⁷Fe Mössbauer spectra were measured at room temperature with a constant acceleration spectrometer with ⁵⁷Co:Rh source. Mössbauer spectra were fitted using doublets describing different local environments of a ⁵⁷Fe nuclide. The differential scanning calorimetry was conducted to determine the crystallization mechanisms of studied alloys.

References:

[1] R. Babilas, K. Młynarek, W. Łoński, M. Lis, D. Łukowiec, M. Kądziołka-Gaweł, T. Warski, A. Radoń, Analysis of thermodynamic parameters for designing quasicrystalline Al-Ni-Fe alloys with enhanced corrosion resistance, J. Alloys Compd. 868 (2021) 1-11.

[4] A. Inoue, H. Kimura, Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system, J. Light Met. 1 (2001) 31-41.

The work was supported by National Science Centre, Poland under research project no.: 2018/29/B/ST8/02264.

^[2] E.J. Lavernia, J.D. Ayers, T.S. Srivatsan, Rapid solidification processing with specific application to aluminium alloys, Int. Mater. Rev. 37 (1992) 1-44.

^[3] L. Zhang, Y. Du, Thermodynamic description of the Al–Fe–Ni system over the whole composition and temperature ranges: Modeling coupled with key experiment, Calphad 31 (2007) 529-540.