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Antiferromagnets (AFMs) are a ubiquitous class of magnetic materials, holding the
promise of low-dissipation spintronic computing devices that can display ultra-fast
switching, density scaling and robustness against stray fields1. However, magnetic
sublattice compensation makes it difficult to detect and control AFM textures in a
reversible and scalable manner via standard techniques2.
We overcame this limitation by developing a novel ionic approach to reversibly tailor
AFM anisotropy3. We focussed on the earth-abundunt AFM α-Fe2O3, which exhibits
a spin-reorientation (Morin) transition between in-plane and out-of-plane configura-
tions. Developing reversible control of AFM anisotropy in α-Fe2O3 is important for
prospects in (i) topological spintronics4,5 and (ii) magnonics6,7. Regarding the former,
I will discuss our recent results where the Morin transition was exploited to stabilize
a wide family of exotic AFM topological textures - half-skyrmions and bimerons - at
room temperature. These topological textures have core sizes (of ≈ 100 nm) and can
be scaled further with anisotropy tuning4.
In this context, I will discuss our findings on ionic control of antiferromagnetism in epi-
taxial α-Fe2O3 films3. The catalytic-spillover process employs Pt nano-structures to
hydrogenate the AFM films, thereby, driving pronounced changes in the anisotropy,
Néel vector orientation and canted magnetism via local charge-doping. As H ions
are very small and light, they can be added/removed from the host lattice, with-
out significantly disturbing the overall structure. This allows our approach to be
stable yet reversible3. Tailoring our work for future applications, we demonstrated
reversible control of the room-temperature AFM-state by doping/expelling H ions in
Rh-substituted α-Fe2O3. I will conclude by presenting the wider implications of our
work, such as how AFM-state control could eventually be realized with E-fields8 and
translated to a wider variety of AFMs (e.g. orthoferrites, orthochromites)9, enabling
the construction of low-energy antiferromagnetic applications.
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