Synthesis and Characterization of $\text{Co}_x \text{Ni}_{1-x} \text{Cr}_2 \text{O}_4$ ($0 \le x \le 1$) Nano Particles.

M.Jacob,¹ C.J.Sheppard,¹ P.Mohanthy,¹ and A.R.E.Prinsloo¹

¹Cr Research Group, Department of Physics, university of Johannesburg

 $CoCr_2O_4$ is a spinel ferrimagnet that crystallizes in the space group Fd3m [1]. There are two clear magnetic phases associated with the compound: a collinear ferromagnetic phase below, T_C of about 94 K and a long-range conical spiral state at the spin-spiral transition temperature, T_S at about 27 K [2]. An additional first-order transition has been reported by several authors [3,4] T_L at about 14 K. The present study aims to synthesize $Co_x Ni_{1-x} Cr_2 O_4$ and to probe the physical and magnetic characteristics of these nanoparticles. $NiCr_2O_4$ has a normal cubic spinel structure within the space group of Fd3m at temperatures above 320 K and exhibits two magnetic transitions at $T_C = 74$ K and $T_S = 31$ K [5]. A magneto-structural transition at 74 K where the structure changes from tetragonal to an orthorhombic phase and magnetic transition from paramagnetic to ferromagnetic. The second transition at 31 K is because of the ordering of the antiferromagnetic component. The structural and magnetic phase transitions happen simultaneously in $NiCr_2O_4$. $NiCr_2O_4$ and $CoCr_2O_4$ are both spinels but each show unique properties; thus, it is thought by considering $Co_x Ni_{1-x} Cr_2 O_4$ with $0 \le x \le 1$, the modification of the magnetic as well as structural properties can be probed. The $Co_x Ni_{1-x} Cr_2 O_4$ with $0 \le x \le 1$ samples were synthesized by sol-gel technique, followed by calcination at different temperatures. The structural characterizations of these samples were studied by x-ray diffraction (XRD) patterns of the samples calcined at different temperatures ranging from 400 to 900° C indicate that the powders are of single phase. The crystallite size estimated by Williamson-Hall method is 5.734 nm for sample $Co_{0.75}Ni_{0.25}Cr_2O_4$ calcined at 500° C. The transmission electron microscope (TEM) was used to study the microstructure of the calcined powders. The particles are not uniform in size. The average particle size from TEM is 5.85 ± 3 nm for the sample Co_{0.75}Ni_{0.25}Cr₂O₄ calcined at 500° C. Most of the particles have a bi-pyramidal shape. The magnetic behavior of composition $Co_{0.75}Ni_{0.25}Cr_2O_4$ synthesized by sol-gel technique calcined at different temperatures were studied. For Co_{0.75}Ni_{0.25}Cr₂O₄ calcined at 700° C determined $T_C = 79.4 \pm 0.5$ K which is less than previously reported $T_C = 90.6 \pm 0.9$ K for $Co_{0.75}Ni_{0.25}Cr_2O_4$ synthesized by co-precipitation and calcined at 900° C [6]. The study reveals the modification of magnetic properties in accordance with calcination temperatures.

References:

[1] Cullity, B., et al. Introduction to Magnetic Materials. 2nd ed. USA: Wiley. (2009)

- [2] G. Lawes., et al. Phys. Rev. B 74, 024413 (2006).
- [3] D. H. Lyons., et al. Phys. Rev. 126, 540 (1962)
- [4] K. Tomiyasu., et al. Phys. Rev. B 70, 214434 (2004).
- [5] T.D. Sparks., et al. Phys. Rev. B 89, 024405 (2014).
- [6] P. Mohanty., et al. J. Magn. Magn. Mater 451, 20 (2018).

Authors acknowledge financial support of SANRF and UJ.