Effect of electronic configuration of substituents for manganese and nonstoichiometry defects on the properties of $La_{0.7}Sr_{0.3}Mn_{0.9}{}^{57}Fe_{0.05}Me_{0.05}O_{3+\gamma}$ (Me = Zn, Mg) manganites

V. Karpasyuk,¹ A. Badelin,¹ R. Eremina,² S. Estemirova,^{1,3,4} and F. Vagizov⁵

¹Astrakhan State University, 414056, Astrakhan, Russia
²Zavoisky Physical-Technical Institute, 420029, Kazan, Russia
³Institute for Metallurgy UB RAS, 620016, Yekaterinburg, Russia
⁴Ural Federal University, 620002, Yekaterinburg, Russia
⁵Kazan Federal University, 420008, Kazan, Russia

Structural and magnetic characteristics of $La_{0.7}Sr_{0.3}Mn_{0.9}^{57}Fe_{0.05}Zn_{0.05}O_{3+\gamma}$ and $La_{0.7}Sr_{0.3}Mn_{0.9}$ ⁵⁷Fe_{0.05}Mg_{0.05}O_{3+ γ} manganites containing Mössbauer isotope ⁵⁷Fe are investigated and compared. The Zn^{2+} and Mg^{2+} ions have almost identical radii (0.74 and 0.72 Å), but different configurations of electron shells $(3d^{10} \text{ and } 2p^6, \text{ cor-}$ respondingly). Ceramic samples were sintered in air at 1473 K. They were then exposed to heat treatments at 1223 K and partial pressure of oxygen in the gas phase of $P_{O2} = 10^{-1}$ Pa, 10^{-8} Pa, and 101.3 kPa, which ensured the production of manganites with stoichiometric oxygen content ($\gamma = 0$), with $\gamma < 0$ (containing anion vacancies) and $\gamma > 0$ (containing cation vacancies), respectively. All synthesized manganites have rhombohedral crystal structure. Mössbauer spectroscopy data correspond to Fe^{3+} (3 d^5) ions. Non-stoichiometry index (γ) is calculated from the data on unit cell volume according to algorithm proposed earlier [1,2]. The following values of γ are obtained: $\gamma = -0.005$; 0.000; 0.007; 0.008 for Zn-containing manganites (ZnM), and $\gamma = -0.022$; 0.000; 0.002; 0.005 for Mg-containing manganites (MgM). ZnM have essentially higher values of magnetization, Curie point (T_c) , and narrowest temperature interval (ΔT) of "ferromagnetic-paramagnetic" transition as compared to MgM. Their structure can be considered as more homogeneous, which corresponds to a lower value of quadrupole splitting (QS). Manganites annealed in oxygen have the narrowest ΔT , apparently due to vacancy mechanism of cation diffusion that smooths out spatial variations of the composition. Magnetization and T_c of ZnM increase in general with increasing the oxygen content, showing a plateau in the intermediate range of γ . MgM have similar dependence of T_c on γ , but their magnetization has a maximum at $\gamma = 0$ and a sharp decline at $\gamma = 0.005$, although QS at latter point is minimal. The results obtained indicate that different effect of Zn^{2+} and Mg^{2+} ions on electromagnetic characteristics of manganites is largely determined by the configuration of their electron shells.

References:

 V.K. Karpasyuk, A.G. Badelin, D.I. Merkulov, I.M. Derzhavin, S.Kh. Estemirova, J. Phys.: Conf. Ser. 1347, 012036 (2019).

[2] D. Merkulov, A. Badelin, S. Estemirova, V. Karpasyuk, Acta Phys. Pol. A 127, 248 (2015).

This work was supported by the Russian Foundation for Basic Research (grant no. 18-52-06011)