Multiband d - p model and the electronic structure of doped quasi-two dimensional NiO₂ layer

Krzysztof Rościszewski¹ and Andrzej M. Oleś^{1,2}

¹Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland ²Max Planck Institute for Solid State Research, Stuttgart, Germany

Superconductivity found in doped NdNiO₂ is puzzling as two local symmetries of doped NiO₂ layers compete [1], with presumably far-reaching implications for the involved superconductivity mechanism [1]. In spite of the great similarity between CuO₂ and NiO₂ planes, there are substantial differences in the electronic structure [2]. Along the family of infinite-layer nickelates $RNiO_2$ with rare-earth R spanning across the lanthanide series, the out-of-plane lattice constant decreases dramatically with an accompanying increase of Ni $x^2 - y^2$ bandwidth; however, surprisingly, the role of oxygen charge transfer diminishes [3].

We introduce and investigate the multiband d-p model (all d orbitals on Ni and p on O included), similarly to that used for $LaMnO_3$ compound [4], describing a quasi-two dimensional NiO₂ layer such as realized in $Nd_{1-x}Sr_xNiO_2$ [4] where superconductivity was discovered. The model takes into account anisotropic nickel-oxygen d - p and oxygen-oxygen p - p hopping processes, complicated crystal-field splittings, the onsite Coulomb repulsions and Hund's exchange tensors both at nickel and at oxygen ions. We investigate periodic boundary Ni–O clusters $(4 \times 4 \text{ and } 8 \times 8 \text{ NiO}_2 \text{ units})$ with these interactions treated in the Hartree-Fock approximation [4]. The valence electron number n (per NiO₂ unit) is assumed to be approximately n = 21 - x (due to surrounding Nd^{3+} and Sr^{2+} ions). Electronic structure of the layer is investigated for x = 0, 0.125, 0.25 and 0.5. For ideal undoped system NdNiO₂ (no Sr admixture) we get strong insulator with degenerate ground state—both nonmagnetic, and magnetic (ferromagnetic, C-type and G-type antiferromagnetic) have all the same energy. However, for nonzero self-dopings x the system becomes conducting (zero HOMO-LUMO gap), also with quasi-degenerate ground state due to numerous competing magnetic metastable states. (Possibilities of getting locally triplet states at Ni ions are also investigated, similarly as in [5]). These findings correlate well with experimental data and with other theoretical predictions available in the literature.

References:

[1] Mi Jiang, M. Berciu, and G. A. Sawatzky, Physical Review Letters 124, 207004 (2020)

[2] A. S. Botana and M. R. Norman, Physical Review X 10, 011024 (2020)

[3] E. Been, W.-S. Lee, H. Y. Hwang, Yi Cui, J. Zaanen et al., Physical Review X 11, 011050 (2021)

[4] K. Rościszewski and A. M. Oleś, Physical Review B 99, 155108 (2019)

[5] T. Plienbumrung, M. Daghofer, and A. M. Oleś, Physical Review B 103, in press (2021)

We kindly thank National Science Centre (NCN) Project No. 2016/23/B/ST3/00839.