Quantitative imaging of antiferromagnetic spin cycloidal textures on strain engineered $BiFeO_3$ thin films with a scanning nitrogen-vacancy magnetometer

<u>H. Zhong</u>,¹ J. Fischer,² A. Haykal,³ A. Finco,³ A. Stark,¹ F. Favaro,¹ P. Maletinsky,¹ M. Munsch,¹ K. Bouzehouane,² S. Fusil,² V. Jacques,³ and V.

 $Garcia^2$

 ¹Qnami AG, Muttenz, Switzerland
²Unité Mixte de Physique, CNRS, Thales, Université Paris Saclay, Palaiseau, France
³Laboratoire Charles Coulomb, CNRS, Université de Montpellier, Montpellier, France

Multiferroics, such as $BiFeO_3$, in which antiferromagnetism and ferroelectricity coexist at room temperature, appears as a unique platform for spintronic [1] and magnonic devices [2]. The nanoscale structure of its ferroelectric domains has been widely investigated with piezoresponse force microscopy (PFM), revealing unique domain structures and domain wall functionalities [3, 4], but nanoscale magnetic textures present in $BiFeO_3$ and their potential for spin-based technology remain concealed. Depending on the strain, growth conditions and crystal orientation, the magnetic state of BiFeO₃ thin films can either show different types of non-collinear cycloids, canted Gtype antiferromagnetic orders, or even a mixture of these [5]. In this report, we present two different antiferromagnetic spin textures in multiferroic $BiFeO_3$ thin films with different epitaxial strains, using a scanning Nitrogen-Vacancy magnetometer (SNVM) based on a single NV defect in diamond with a dc field sensitivity of $\sim 1 \ \mu T / \sqrt{Hz}$. The two BiFeO₃ samples were grown $DyScO_3$ (110) and $SmScO_3$ (110) substrates using pulsed laser deposition. The striped ferroelectric domains in both samples are first observed by the in-plane PFM. The corresponding SNVM images confirm the existence of the spin cycloid texture. For the $BiFeO_3$ grown on $DyScO_3$ (110) substrate, the 90-degree in-plane rotation of the ferroelectric polarization imprints the 90-degree in-plane rotation of the cycloidal propagation direction along $k_1 = [-1, 1]$ 0, corresponding to the type-I cycloid. On the contrary, in the BiFeO₃ film grown on SmScO_3 (110) substrate, the propagation vectors are found to be along $k_1^{'} = \begin{bmatrix} -2 & 1 & 1 \end{bmatrix}$ and $k'_2 = [1 - 2 \ 1]$ directions in the neighboring domains separated by the 71° domain wall. Our results here shed the light on future potential for reconfigurable nanoscale spin textures on multiferroic systems by strain engineering.

References:

[1] J. T. Heron et al., Nature. 516, 370-373 (2014)

- [2] P. Rovillain et al., Nature Mater. 9, 975–979 (2010)
- [3] N. Balke et al., Nature Phys. 8, 81–88 (2011)
- [4] G. Catalan, et al. Rev. Mod. Phys. 84, 119–156 (2012)
- [5] A. Haykal, et al., Nat. Commun. 11, 1704 (2020)