Magnetocaloric effect in binary Gd-Pb alloys

Piotr Gębara, ¹ Jozef Kovac, ² Michal Rajnak, ² and Mariusz Hasiak ³

¹ Department of Physics, Czestochowa University of Technology,

Armii Krajowej 19, 42-200 Czestochowa, Poland

² Institute of Experimental Physics, Slovak Academy of Sciences,

Watsonova 47, 040 01 Kosice, Slovakia

³ Department of Mechanical, Materials and Biomedical Engineering,

Wrocław University of Science and Technology,

Łukasiewicza 5, 50-371 Wrocław, Poland

The aim of present work was to study the phase composition, microstructure and magnetocaloric effect of binary Gd-Pb alloys. Samples were prepared by arc-melting of high purity constituent elements. The XRD studies were carried out using a Bruker D8 Advance diffractometer with Cu-K α radiation and semiconductor detector Lynx-Eye. The microstucture and chemical composition of the samples were studied by scanning electron microscopy (SEM) using JEOL JSM 6610LV, equipped with an energy dispersive X-ray spectrometer (EDX). The XRD and SEM studies revealed biphasic structure built by pure Gd and secondary phase Gd-Pb. The magnetocaloric measurements revealed two maxima corresponding to two phases, which caused an increase of half width at half maximum of ΔS_M vs. T curve. The analysis of the temperature dependence of magnetic entropy change allowed to construct temperature dependence of exponent n.