Antiferromagnetism and magnetocaloric effects in $GdCrO_3$ based compounds

Jianhang Shi,^{1,2} Mohinder S. Seehra,³ and <u>Menka Jain^{2,4}</u>

¹Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA

²Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA

³Department of Physics and Astronomy, West Virginia University,

Morgantown, West Virginia 26506, USA

⁴Department of Physics, University of Connecticut, Storrs, CT 06269, USA

Here we present a comparative study of the structural, magnetic, and magnetocaloric properties of polycrystalline rare-earth chromite (RCrO₃) compounds, focusing on the effect of Gd-site or Cr-site substitutions on the caloric properties of GdCrO₃. For this work, the bulk powder/pellets were synthesized by the citrate solution route. RCrO₃ materials were found to stabilize in orthorhombically distorted perovskite structure. The ionic radii, orthorhombic strain, in-plane & out-of-plane $Cr-O_1-Cr$ bond angles, bond lengths, all influences the *Néel* temperature (T_N^{Cr}) and magnetocaloric properties of the compounds. For example, the Néel temperature changes from 155 K for Er_{0.33}Gd_{0.67}CrO₃, to 167 K for GdCrO₃ and 275 K for GdFe_{0.5}Cr_{0.5}O₃. The maximum value of magnetic entropy change ($-\Delta S$) at 7 T for Er_{0.33}Gd_{0.67}CrO₃, GdCrO₃ and GdFe_{0.5}Cr_{0.5}O₃ were 10.7 J kg⁻¹K⁻¹ (at 15 K), 31.5 J kg⁻¹K⁻¹ (at 5 K), and 30.7 J kg⁻¹K⁻¹, respectively. Corresponding relative cooling power were 416.4 J kg⁻¹, 531.1 J kg⁻¹, and 566.5 J kg⁻¹, respectively. Details and discussion of these results along with those of Cr-doped samples will be presented.