## Orbital Engineering of Spin-Orbit effect at Correlated Oxide Interface

Ganesh Ji Omar<sup>1</sup> and Ariando Ariando<sup>1</sup>

<sup>1</sup>Department of Physics, National University of Singapore

Using interlayer interaction to control functional heterostructures with atomic-scale designs has become one of the most effective interface-engineering strategies nowadays. Here, we demonstrate the effect of a crystalline LaFeO<sub>3</sub> buffer layer on amorphous and crystalline LaAlO<sub>3</sub>/SrTiO<sub>3</sub> heterostructures. The LaFeO<sub>3</sub> buffer layer acts as an energetically favored electron acceptor in both LaAlO<sub>3</sub>/SrTiO<sub>3</sub> systems, resulting in modulation of interfacial carrier density and hence metal-to-insulator transition. For amorphous and crystalline LaAlO<sub>3</sub>/SrTiO<sub>3</sub> heterostructures, the metal-to-insulator transition is found when the LaFeO<sub>3</sub> layer thickness crosses 3 and 6 unit cells, respectively. Such different critical LaFeO<sub>3</sub> thicknesses are explained in terms of distinct characteristic lengths of the redox-reaction-mediated and polar-catastrophe-dominated charge transfer, controlled by the interfacial atomic contact and Thomas-Fermi screening effect, respectively. Our results not only shed light on the complex interlayer charge transfer across oxide heterostructures but also provides a new route to precisely tailor the charge-transfer process at a functional interface.

## **References:**

[1] Omar et al., Nano Letters, 20, 2493 (2020)