The interplay of 4f state and superconductivity in CeIr₃: DMFT study.

Sylwia Gutowska¹ and Bartłomiej Wiendlocha¹

¹Faculty of Physics and Applied Computer Science, AGH University of Science and Technology in Krakow

CeIr₃ has caught the attention over the past few years. It grows in trigonal structure and is a superconductor below $T_c = 3.1$ K. On the one hand the muon spin rotation and relaxation measurement shows its superconductivity to be of nearly BCS character [1], while on the other hand multiband character of this effect has been deduced from temperature dependence of critical magnetic field [2].

In our first work [3] we have shown, that its electronic band structure, including multiband Fermi surface, is dominated by Ir 5d states, thus their are suggested to be crucial for superconductivity of CeIr₃.

However, the role of 4f states of cerium is still unclear. If nearly BCS character of superconductivity is a case in CeIr₃, the McMillan formula for electron-phonon coupling (EPC) constant should be proper and resulted value 0.67 should agree with the EPC constant calculated as a renormalization of electronic part of heat capacity, $\lambda = \frac{\gamma_{expt}}{\gamma_{calc}} - 1$, where γ_{expt} , γ_{calc} are Sommerfeld constants determined on the basis of measured heat capacity and calculated electronic structure respectively. However, the result of letter formula is strongly dependent of a treatment of f states in calculations, being equal to 1.47 in the case of GGA approximation of electronic correlation and 3.40 in the case of GGA+U approximation. Both values are in strong disagreement with McMillan value, suggesting, that both approximations of electronic band structure of CeIr₃ fail and a role of 4f states is more subtle.

Here we are presenting the new approach to the band structure of CeIr_3 with help of embedded dynamical mean field theory (eDMFT) [4], which allows to treat f states properly. We show, that 4f states of Ce are present around the Fermi level more than previous study show, leading to smaller renormalization of heat capacity and a better agreement with McMillan value of EPC constant. This study show, that even if Ir 5d states are crucial for superconductivity of CeIr₃, Ce 4f states are also important, as they are present around Fermi level and are weakening the electronphonon interactions.

References:

[1] Adroja, D. T., et al. "Pairing symmetry of an intermediate valence superconductor $CeIr_3$ investigated using muSR measurements." arXiv preprint arXiv:2001.03201 (2020).

[2] Sato, Yoshiki J., et al. "Anisotropy of upper critical field and surface superconducting state in the intermediate-valence superconductor $CeIr_3$." Physical Review B 102.17 (2020): 174503.

[3] Górnicka, Karolina, et al. "CeIr₃: superconductivity in a phase based on tetragonally close packed clusters." Superconductor Science and Technology 32.2 (2019): 025008.

[4] Kotliar, Gabriel, et al. "Electronic structure calculations with dynamical mean-field theory." Reviews of Modern Physics 78.3 (2006): 865.

The research performed at the AGH-UST was supported by the National Science Center (Poland), Project No. 2017/26/E/ST3/00119. S.G. was partially supported by the EU Project POWR.03.02.00-00-I004/16.