Ab initio studies of selected Fe/Co alloys for permanent magnet applications

M. Werwiński,¹ A. Edström,² O. Eriksson,² and J. Rusz²

 ¹Institute of Molecular Physics Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
²Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

The $(Fe_{1-x}Co_x)_2B$ [1], $(Fe_{1-x}Co_x)_5SiB_2$ [2], and $(Fe_{1-x}Co_x)_5PB_2$ alloys have been investigated theoretically as candidates for rare-earth free permanent magnets. Magnetocrystalline anisotropy energies MAE, identified as the leading magnetocrystalline anisotropy constants K_u , have been calculated with the virtual crystal and coherent potential approximations (VCA and CPA) for a full range of Fe/Co compositions. The variations of MAE versus magnetization have been addressed with a full relativistic fixed spin moment method. The optimal compositions with the highest MAE's were determined. The *ab initio* results have been confronted with experiment.

References:

[1] A. Edström et al. Phys. Rev. B 92, 174413 (2015)

[2] M. Werwiński et al., Phys. Rev. B 93, 174412 (2016)

M. Werwiński acknowledges the financial support from the Foundation of Polish Science grant HOMING. The HOMING programme is co-financed by the European Union under the European Regional Development Fund.