Abundance of magnetic coupling modes in the Co/Mo multilayers

<u>A. Wawro</u>,¹ Z. Kurant,² M. Tekielak,² P. Dłużewski,¹ K. Morawiec,¹ E. Milińska,¹ A. Pietruczik,¹ M. Matczak,³ F. Stobiecki,³ and A. Maziewski²

¹Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
²Faculty of Physics, University of Bialystok, Bialystok, Poland
³Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland

Co/Mo layered structures display numerous interlayer coupling modes depending on the Co layer and Mo spacer thickness (d_{Co} and d_{Mo}), repetition number, thickness and type of a buffer layer. In the low d_{Co} limit (< 1.5 nm) oscillations with d_{Mo} between parallel (P) and antiparallel (AP) couplings of perpendicular magnetization in the Au/Co/Mo(d_{Mo})/Co/Au structures are observed. Thicker Co layers (3 nm) in the Mo/Co/Mo(d_{Mo})/Co/Mo systems, magnetized in the plane, exhibit P-AP-P or P-AP-BQ (biquadratic) coupling sequences with d_{Mo} , depending on the buffer thickness and repetition number. Moreover, the Mo buffer induces an additional in-plane two-fold anisotropy, contrary to Au. Observed couplings are reflected in magnetoresistance measurements. Abundance of coupling modes designates the Co/Mo system for possible applications in spintronics.

Support from the National Science Centre in Poland under the project 2014/13/B/ST5/01834 is acknowledged.