Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO_2 thin films

<u>M. Stiller</u>,¹ J. Barzola-Quiquia,¹ P. Esquinazi,¹ D. Spemann,² J. Meijer,² M. Lorenz,³ and M. Grundmann³

 ¹Division of Superconductivity and Magnetism, Institute for Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany
²Division of Nuclear Solid State Physics, Institute for Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany
³Semiconductor Physics Group, Institute for Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany

The temperature and field dependence of the magnetization of undoped anatase TiO_2 thin films on $SrTiO_3$ substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers. The as-prepared thin film shows ferromagnetism which increases after irradiation. A magnetic anisotropy opposite to the expected form anisotropy, was observed after the first irradiation. Titanium vacancies as di-Frenkel pairs appear to be responsible for the ferromagnetism and the strong anisotropy. Magnetic impurities are ruled out as a source of the ferromagnetism by means of particle-induced X-ray emission measurements.