Mixed Eu²⁺ - Eu³⁺ valence state in Eu- and Na-doped PbSe <u>B. Wiendlocha</u>,^{1, 2} SunPhil Kim,² Yeseul Lee,³ Bin He,² G. Lehr,⁴ M.G. Kanatzidis,³ D.T. Morelli,⁴ and J.P. Heremans^{2, 5}

¹Faculty of Physics and Applied Computer Science, AGH-UST Krakow, Poland ²Department of Mech. Eng., The Ohio State University, Columbus, OH ³Department of Chemistry, Northwestern University, Evanston, IL

⁴Deptartment of Chem. Eng., Michigan State University, East Lansing, MI ⁵Department of Physics. The Ohio State University, Columbus, OH

The Eu atoms in $Pb_{1-x}Eu_xSe$ have long been assumed to be divalent. We show that p-type doping of this semiconductor with Na can modify the Eu valence: a mixed, $Eu^{2+} - Eu^{3+}$ state appears in $Pb_{1-x-y}Eu_xNa_ySe$. Magnetization, carrier concentration, resistivity, and thermopower of $Pb_{1-x-y}Eu_xNa_ySe$ are reported for a number of samples with different x and y. An increase in thermopower at a given carrier concentration was identified and attributed to the presence of enhanced ionized impurity scattering. A strong decrease in the hole concentration is observed in $Pb_{1-y}Na_ySe$ when Eu is added to the system, which we attribute to a $Eu^{2+} - Eu^{3+}$ self-ionization process. This is evidenced by magnetization measurements, which reveal a significant reduction of the magnetic moment of $Pb_{1-x}Eu_xSe$ upon alloying with Na. The conclusions are supported further by the electronic structure calculations, which show an instability of the 4f⁷ configuration of the Eu²⁺ ion appears with Na doping.