Magnetocaloric effect and physical properties of slowly cooled $NiMn_{1-x}Cr_xGe \ (0.04 \le x \le 0.25)$

<u>A. Szytuła</u>,¹ S. Baran,¹ T. Jaworska-Gołąb,¹ M. Marzec,¹ A. Deptuch,¹ Yu. Tyvanchuk,² B. Penc,¹ A. Hoser,³ A. Sivachenko,⁴ V. Val'kov,⁴ V. Dyakonov,⁵ and H. Szymczak⁵

¹Institute of Physics, Jagiellonian University, Kraków, Poland

²Ivan Franko National University of Lviv, Lviv, Ukraine

³Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
⁴Donetsk National Academy of Sciences of Ukraine, Donetsk, Ukraine
⁵Institute of Physics, Polish Academy of Sciences, Warszawa, Poland

The compounds undergo a martensitic phase transition. The temperature of the structural phase transition significantly decreases with increasing x. AF helicoidal ordering with the propagation vector $\vec{k} = (k_x, 0, 0)$ for x = 0.04 and 0.11 and F one for x = 0.25 has been found. The sample with x = 0.18 shows a coexistence of a helicoidal AF structure and the F one below ~170 K while at higher temperatures the ferromagnetic ordering remains stable up to 362 K. Maximum entropy change (- Δ S) increases with increasing Cr concentration from about 8 J/(kg K) at 90 kOe, found for x = 0.04 and 0.11 at the Nèel temperature, up to 29 J/(kg K) observed for x = 0.25 in cooling regime at the magnetostructural phase transition temperature.