Strong spin-orbit effects in transition metal oxides with tetrahedral coordination

<u>F. Forte</u>,^{1,2} D. Guerra,¹ A. Avella,^{1,2} C. Autieri,³ A. Romano,^{1,2} and C. Noce^{1,2}

¹Physics Department 'E. R. Caianiello', University of Salerno, Italy ²CNR-SPIN, Operative Unit of Salerno, Italy ³CNR-SPIN, Operative Unit of L'Aquila, Italy

We analyze the effects of strong spin-orbit coupling (SOC) in heavy transition metal oxides with tetrahedral coordination and eg^1 configuration. We show that the interplay between strong Hubbard interaction, large SOC strength and crystal field leads to an unquenched orbital momentum and a deviation from a conventional s=1/2Heisenberg antiferromagnet, to an extent that crucially depends on the ratio between the microscopic parameters. The specific case of the insulating KOsO₄ is analyzed by combined ab-initio and exact diagonalization approaches. We show that, due to the peculiar hopping connectivity and structural deformation, an entangled spin/orbital state emerges, which is marked by strong anisotropy.

References:

[1] D. Pesin and L. Balents, Nat. Phys. 6, 376 (2010)