Doping effect on the electronic structure and thermodynamic properties in $Ce_3Ru_4Sn_{13}$

L. Kalinowski,¹ J. Goraus,¹ P. Witas,¹ and A. Ślebarski^{1,2}

¹Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice, Poland

²Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-950 Wrocław, Poland

A comprehensive study of heat and electric transport, magnetic, and electronic structure (experiment and calculations) properties is reported for a skutterudite-related Ce₃Ru₄Sn₁₃ heavy fermion system with the respective substitution of Co and Sb into Ru and Sn sites. Ce₃Ru₄Sn₁₃ is obtained as a heavy fermion system with high electronic contribution to the specific heat C(T)/T of $\approx 3J/K^2mol_{Ce}$, and a significant Schottky anomaly below about 10 K. The complex study gives a consistent interpretation of the impact of doping on the crystal electric-field effect and Kondo temperature. For Ce₃Ru₄Sn₁₃ we report a field-induced phase transition between the magnetically correlated heavy fermion phase and the single-ion Kondo impurity state, which does not depend on the type of dopant. We also demonstrate that doping does not improve the poor thermoelectric properties of Ce₃Ru₄Sn₁₃.

References:

[1] L. Kalinowski, J. Goraus, P. Witas and A. Ślebarski, Physical Review B 94, 235151 (2016)