Phase and structure formation in the layered $[Fe_{50}Pt_{50}/Cu/Fe_{50}Pt_{50}]_n$ (n=1, 2) films

<u>R.A. Shkarban</u>¹ O.V. Fihurna¹ A.Yu. Chernysh¹ and Iu.N. Makogon¹

¹National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 03056, Prospect Peremogy 37, Kyiv, Ukraine

The use of additional layers of alloying element such as Cu in Fe₅₀Pt₅₀ films can accelerate ordering processes by changing the stress state in FePt layer and leads to reduction of $L1_0$ phase formation temperature. The effect of annealing atmosphere and adding of Cu on $L1_0$ phase formation in [Fe₅₀Pt₅₀/Cu(7,5 nm)/Fe₅₀Pt₅₀]_n films, where n=1, 2 was investigated. The films were deposited by magnetron sputtering on SiO₂/Si(001) substrate. Annealing of samples in temperature range of 5000°C-8000°C for 30 s was carried out in vacuum and hydrogen atmosphere. The phase transition from the disordered A1-FePt phase into the ordered $L1_0$ phase in film with n=1 begins after annealing in vacuum at 500°C. In film with n=2 film ordering temperature rises up to 700°C. At annealing in hydrogen independently from quantity Cu interlayers $L1_0$ -FeCuPt forms at 500°C. The annealing in hydrogen accelerates of ordering processes.