Magnetic properties of the R_2 MgCo₉ (R = Y, Nd, Tb) compounds and Nd₂MgCo₉H_{11.4} hydride

V. Shtender,¹ V. Paul-Boncour,² R. Denys,¹ and I. Zavaliy¹

¹Karpenko Physico-Mechanical Institute, NASU, Lviv, Ukraine ²Université Paris-Est, ICMPE, CNRS, UPEC, Thiais, France

New R_2 MgCo₉ (R = Y, Nd, Tb) compounds have been synthesized by powder sintering method and corresponding hydrides have been prepared by solid gas method. Their crystal structure and magnetic properties have been systematically studied. X-ray diffraction analysis showed that all R_2 MgCo₉ compounds belong to the PuNi₃-type structure. The Nd₂MgCo₉H_{11.4} hydride preserves PuNi₃-type structure with hydrogen-induced volume expansion 16.7 %. The influence of the R element on the magnetic properties of R_2 MgCo₉ compounds have shown that R_2 MgCo₉ (R = Y, Nd) compounds are ferromagnetic (ferrimagnetic for Tb) with high Curie temperature T_C = 612, 635 and 525 K respectively. A spin reorientation at 407 and 225 K have been observed for R_2 MgCo₉ (R = Y, Nd) respectively. Hydrogenation of Nd₂MgCo₉ causes the decrease of the transition temperatures due to a weakening of the magnetic interactions and probably a change of magnetic order (to antiferromagnetic with T_N = 265 K) and various spin reorientations at lower temperatures [1].

References:

[1] V.V. Shtender, R.V. Denys, V. Paul-Boncour et al., J. Alloy. Compd. 695 (2017) 1426–1435.