Mössbauer study of the some intermetallic compounds $\mathrm{Fe}_{80-x}\mathrm{Ni}_{x}\mathrm{B}_{20}~(\mathrm{x}=0,\,8,\,16,\,24,\,28)$

M. Kądziołka-Gaweł,¹ A. Chrobak,¹ and R. Babilas²

¹Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
²Institute of Engineering Materials and Biomaterials, Silesian University of Technology,
S. Konarskiego 18a, 44-100 Gliwice, Poland

Fe-based amorphous and nano-crystalline alloys were prepared by the melt-spinning technique and characterized by X-ray diffraction, magnetostatic and Mössbauer effect methods. The Mössbauer spectroscopy allows to study the local environments of the Fe atoms in the investigated $Fe_{80-x}Ni_xB_{20}$ (x = 0, 8, 16, 24, 28) compounds and showing the changes in the structure due to the changing of Ni addition. Combination of X-ray diffraction and Mössbauer spectroscopy results confirm formation of different phase complex including the α -Fe-Ni, γ -Fe-Ni, Fe₂B and Fe₃B in investigated materials. Magnetostatic measurements indicate on structural transformation around 700°C in compounds with x = 8 and 16.