Fano resonances in side-coupled magnonic crystal/rectangular YIG-resonator system

S. Vysotsky,¹ Y. Khivintsev,¹ G. Dudko,¹ V. Sakharov,¹ <u>Y. Filimonov</u>,¹ N. Novitskii,² and A. Stognij²

¹Kotel'nikov IRE RAS (Saratov Branch), 38 Zelenaya str., 410019, Saratov, Russia

²SPMRC NAS of Belarus, 66 Independence Avenue, 220072, Minsk, Belarus

MSSW propagation in the system consisting of 1D-magnonic crystal waveguide (MCW) and side-coupled rectangular YIG-resonator was studied. Such system can suport Fano resonances [1]. On the other hand the considered structure can be viewed like MCW with side-coupled structural defect. We have shown that the MSSW transmitted characteristic (S_{21}) at YIG-resonator frequency f_R depends on position of this frequency with respect to frequency f_B of the Bragg resonances in MCW. If frequency f_R is located inside the magnonic gap $(f_R \approx f_B)$ the $S_{21}(f_R)$ takes form corresponding to defect mode excitations – the amplitude of transmitted signal increase. Otherwise $(f_R \neq f_B)$ the $S_{21}(f_R)$ characteristic takes the form of the resonance absorption. **References:**

[1] A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Modern Phys., 82, 2257 (2010).

This work was supported by the Russian Science Foundation grant 17-19-01673 and performed in Kotel'nikov IRE RAS.