Magneto-rheological and thermal transport characteristics of a transformer oil based ferrofluid

<u>K. Paulovičová</u>,¹ J. Tóthová,² M. Rajňák,^{1, 2} Z. Wu,³ B. Sundén,³ L. Wadsö,⁴ T. Tobiáš,¹ P. Kopčanský,¹ M. Timko,¹ and V. Lisý²

 ¹Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovakia
²Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
³Department of Energy Sciences, Lund University, 22100 Lund, Sweden
⁴Division of Building Materials, Lund University, 22100 Lund, Sweden

Ferrofluids constitute a potential substitute of liquid dielectric in high voltage technologies. Hence, the flow and thermal transport characteristics of a ferrofluid based on transformer oil were investigated. The magneto-rheological behavior of the ferrofluid was studied in the shear rate range from 1 to 1000/s and magnetic field up to 1 T. The thermal conductivity, specific heat and thermal diffusivity were obtained for the studied oil and ferrofluid. The Newtonian character of the ferrofluid changed to a non-Newtonian by application of the magnetic field. The magneto-viscous effect has been observed at low shear rates. Doping of the oil by 3 wt% of the nanoparticles resulted in enhancement of the thermal conductivity by about 3.2 %.