Realization of Negative magnetization and Asymmetric magnetoresistance in GdFe₄MnAl₇ intermetallic alloy

Venkatesh Chandragiri¹ and Wei Ren¹

¹ICQMS, Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China

The magnetization of the GdFe₅Al₇ do not show magnetic compensation as $M_R < M_{Fe}$ [1, 2]. The Mn doped alloy shows following significant points: (i). Although, the parent compound, GdFe₅Al₇ does not show negative magnetization and $T_{\rm comp}$, the Mn doped alloys show negative magnetization associated with the magnetic compensation at $T_{\rm comp} = 20$ K. (ii). The magnetic ordering (T_c) was seen in parent compound at T = 255 K, while doping of Mn leads to T_c value 175 K, indicating that the exchange interactions induced by the Mn doping are act opposite to the Fe sublattice interactions (according to the mean field theory). (iii). M-H loops are weakly hysteresis well below $T_{\rm comp}$ and no hysteresis similar to soft ferromagnetic nature were seen between the T_c and $T_{\rm comp}$ which is noticed for GdFe₅Al₇ at T = 2 K. Further, meta-magnetic transition like features were found in the M-H loops nearby $T_{\rm comp}$ which was typically seen for magnetic compensated analogues.

References:

D.I. Gorbunov, S. Yasin, A.V. Andreev, Y. Skourski, N.V. Mushnikov, E.V. Rosenfeld, S. Zherlitsyn, J. Wosnitza, J. Magn. Magn. Mater., **383** (2015) 208-214.
N. Chan karini K.K. Luon, P.V. Samuet Islamma, Phys. Rev. B **62** (2015) 014407.

[2] V. Chandragiri, K.K. Iyer, E.V. Sampathkumaran, Phys. Rev. B, 92 (2015) 014407.